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Abstract

Motivation

Drug–target interaction (DTI) prediction is crucial for drug discovery, significantly reducing costs and time in

experimental searches across vast drug compound spaces. While deep learning has advanced DTI prediction

accuracy, challenges remain: (i) existing methods often lack generalizability, with performance dropping

significantly on unseen proteins and cross-domain settings; (ii) current molecular relational learning often

overlooks subpocket-level interactions, which are vital for a detailed understanding of binding sites.

Results

We introduce SP-DTI, a subpocket-informed transformer model designed to address these challenges through:

(i) detailed subpocket analysis using the Cavity Identification and Analysis Routine (CAVIAR) for interaction

modeling at both global and local levels, and (ii) integration of pre-trained language models into graph neural

networks to encode drugs and proteins, enhancing generalizability to unlabeled data. Benchmark evaluations

show that SP-DTI consistently outperforms state-of-the-art models, achieving a ROC-AUC of 0.873 in unseen

protein settings, an 11% improvement over the best baseline.

Availability and implementation

The model scripts are available at https://github.com/Steven51516/SP-DTI.

Contact and Supplementary Information

For correspondence, please contact xiajun@westlake.edu.cn. Supplementary data are available online at

Bioinformatics.
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1. Introduction

The process of drug discovery is extremely slow and costly,

making the accurate prediction of drug-target interactions (DTI)

crucial for the identification and development of new therapeutics.

As the approval process for a drug by the Food and Drug

Administration (FDA) takes approximately 12 years and costs

over $1 billion[Van Norman, 2016], there is a need for more

efficient methods to screen and filter out compounds with low

DTI, thereby reducing the sample size in subsequent phases of

drug development. Traditional methodologies, such as molecular

docking[Meng et al., 2011], which rely heavily on crystal

structures and scoring functions[Pinzi and Rastelli, 2019], are

insufficient to address the increasingly intricate nature of emerging

complex diseases. Additionally, machine learning models, such as

SVM[Cortes and Vapnik, 1995] and random forest[Breiman, 2001]

do not provide sufficiently high prediction accuracy, limiting their

effectiveness in identifying potential DTIs[Voitsitskyi et al., 2023].

Fortunately, the emergence of deep learning models has marked a

shift in DTI prediction, moving beyond conventional approaches

towards more efficient and integrative models.

Early methods obtained features solely from 1D sequence

data and 2D molecular graphs, often using CNNs and GNNs.

For example, DeepDTA[Öztürk et al., 2018] demonstrated

the effectiveness of CNNs in extracting hidden representations

from amino acid sequences and drug SMILES strings, and
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DeepConv-DTI[Lee et al., 2019] used convolution layers to

capture the local residue patterns of protein subsequences.

Other models have incorporated 2D molecular graphs of drug

compounds. DEEPScreen[Rifaioglu et al., 2020] employed CNNs

to learn the complex features of readily available 2D compound

representations, and Tsubaki et al. [2018] used GNNs to handle

drug molecular graphs predicted by RDkit[Landrum et al., 2021].

With the development of pre-trained language models and

attention mechanism, DTI prediction models began to focus on

more advanced techniques, such as substructure identification,

protein and drug sequence pre-training, and addition of interaction

layers[Wei et al., 2022, Lee and Nam, 2022, Chatterjee et al.,

2023]. Notably, MolTrans[Huang et al., 2020] employed the

Frequent Consecutive Sub-sequence (FCS) mining module to

break the molecular sequences into sub-structures and included

an interaction model that mimicked biological interactions;

MocFormer[Zhang et al., 2023] used ESM-2[Lin et al., 2022]

and UNI-MOL[Lu et al., 2023, Zhou et al., 2023] to pre-train

the protein and drug sequences respectively, inputting them

into a transformer with bilinear pooling; and DrugBAN[Bai

et al., 2023] proposed a deep bilinear attention network with

domain adaptation to learn the local interactions between drugs

and proteins. Although these enhancements improved the DTI

prediction performance, the models still relied only on 1D

sequences and 2D molecular graphs. This approach provided

limited information about the interactions, missing critical details

such as the spatial arrangement of atoms and potential binding

pockets on the proteins.

With the advancements in 3D structure prediction, the

integration of spatial features has become crucial in DTI

prediction. For instance, Ragoza et al. [2017] applied the CNN

scoring function to evaluate DTI using protein-ligand complex

datasets from pose prediction and virtual screening, thereby

determining correct bindings. In addition to pre-determined 3D

structures, recent models have utilized structure prediction tools

such as RDKit[Landrum et al., 2021] and AlphaFold[Jumper et al.,

2021] to convert drug and protein sequences into 3D structures.

Drug3D-DTI[Liao et al., 2021] uses the RDKit package to generate

3D structures for small drug molecules but still uses 1D amino acid

sequence for protein input. 3DProt-DTA[Voitsitskyi et al., 2023]

incorporated AlphaFold to obtain a protein’s 3D structural data to

enhance model adaptability, allowing it to be applied to proteins

without crystal structures. The addition of spatial dimensionality

to DTI models enables more detailed and precise interaction

predictions. However, while integrating spatial features, these

models are still primarily based on residue-level protein graphs

and lack information regarding atomic-level binding pockets. To

address this issue, AttentionSiteDTI[Yazdani-Jahromi et al., 2022]

uses the convex hull algorithm[Saberi Fathi and Tuszynski, 2014]

to identify pockets and construct atomic-level pocket graphs,

thereby improving the performance by providing more detailed

structural information.

Despite extensive research efforts and several notable advances,

the challenge of DTI prediction remains unresolved, as many

studies report significant performance declines when tested on

unseen protein splits and cross-domain datasets[Bai et al., 2023].

These challenges persist primarily due to two key factors. First,

the scope of labeled data is often limited, while vast amounts

of unlabeled data remain underutilized. Although many studies

have used pre-trained encoder models to generate latent-space

molecular representations, these models often fail to incorporate

graph-level knowledge for drugs and proteins. As a result, they

overlook critical details related to stereochemistry and bonding,

lacking the necessary physical and chemical knowledge to achieve a

comprehensive molecular representation[Zhu et al., 2023]. Second,

the complexity of proteins, which can be represented at various

levels such as sequences, amino acid graphs, and atom-level

graphs, adds further challenges. Recent approaches have aimed to

improve the quality of protein encoding by incorporating encoders

for protein pockets, which are specific regions on the protein

surface that serve as potential binding sites for drugs and can be

modeled at the atom level[Wang et al., 2021a, Yazdani-Jahromi

et al., 2022]. However, these models often overlook the fact

that pockets can be decomposed into subpockets, which more

accurately represent how drugs bind at a finer level[Volkamer et al.,

2010]. Additionally, many analyses fail to assign importance scores

to each pocket, missing valuable insights that could help the model

better recognize the significance of different pockets.

In this study, we propose SP-DTI, which builds upon existing

methodologies by introducing new modules for enhanced molecular

representation, feature fusion, and interaction modeling.

• We introduce the Subpocket Modeling Module (SMM) to

enable granular modeling of potential protein binding sites.

We propose using the Cavity Identification and Analysis

Routine(CAVIAR)[Marchand et al., 2021] to provide rank-

based information for each pocket and to decompose each

pocket into subpockets.

• We propose the Seq-Graph Fusion Module (SGFM) to

integrate graph and sequence-level information. We applied

pre-trained language models for both drugs and proteins,

incorporating them as additional node features for both

molecule graphs. To our knowledge, this is the first study to

propose such a fusion method for both drugs and proteins

in the DTI task. This approach effectively improves the

generalizability of the model and enables a unified information

representation for both drugs and proteins.

• We introduce a Subpocket-Informed Transformer, guided by

the ranking of pockets, to integrate information at the

subpocket, global protein, and global drug levels. This module

effectively captures the interactions between molecules to

improve binding prediction performance.

2. Materials and Methods

We introduce SP-DTI, an end-to-end deep learning framework

designed to address the challenges in DTI prediction outlined in

the previous section. Before describing the framework in detail, we

define the problem in Section 2.1, and justify the selection of base

encoders in Section 2.2.

2.1. Problem Definition

We frame the drug-target interaction prediction as a binary

classification task. The objective was to determine the probability

of interaction between the drug and target protein pairs. Drugs

are represented by their SMILES notation D, which is a sequence

of atomic and bond tokens derived from their molecular structure.

Target proteins, denoted as A, are represented by amino acid token

sequences. The task involves learning a function f(D,A) → {0, 1}
that maps each drug-target pair to a binary interaction score,

where 0 represents no interaction and 1 represents an interaction.
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2.2. Graph Neural Networks

Graphs provide a natural way to represent molecules, as they

effectively capture key topological information such as bonds

and neighborhood interactions[Tsubaki et al., 2018]. As a result,

graph-based methods are widely used in DTI tasks, often replacing

sequence-based approaches like CNN-based or fingerprint-based

methods[Shao et al., 2022]. FlexMol further validates this

approach empirically by evaluating various combinations of

encoders and consistently demonstrating the superior performance

of graph-based methods[Liu et al., 2024].

Prior studies have shown that among commonly used GNNs,

including GAT, GCN, GIN, GINE, and GMF, no single model

significantly outperforms others as a protein or ligand graph

encoder in DTI tasks.[Voitsitskyi et al., 2023]. We extended the

analysis to 3D ligand encoders, such as MGCN[Lu et al., 2019] and

SchNet[Schütt et al., 2018], as detailed in Supplementary Figure

S1, and observed consistent results. Due to GCN’s simplicity and

computational efficiency, we followed prior works in selecting it

as the primary encoder[Bai et al., 2023, Wang et al., 2021b].

Our encoder differs by integrating information from a pre-trained

language model, which is discussed in detail in Section 2.3.2.

2.3. Model

Our SP-DTI model consists of three parts: Subpocket Modeling

Module, Seq-Graph Fusion Module and Interaction Module. An

overview of the proposed model is shown in Figure 1.

2.3.1. Subpocket Modeling Module

The Subpocket Modeling Module (SMM) aims to capture the

intricate interactions between drugs and proteins at the atomic

level. This is achieved by identifying and modeling subpockets,

which are smaller regions within larger protein binding pockets

that drug molecules can potentially attach to. Volkamer et al.

[2010] suggested that subpockets provide a more accurate

representation of real ligand-binding regions because ligands are

often predominantly contained within a single subpocket, thereby

achieving higher pocket coverage.

The three-dimensional structures of the proteins were obtained

in the Protein Data Bank (PDB) format using AlphaFold2[Jumper

et al., 2021]. Subsequently, we employed the Cavity Identification

and Analysis Routine (CAVIAR)[Marchand et al., 2021] algorithm

to identify potential binding pockets and further dissect them into

subpockets. For each identified pocket pi, CAVIAR assigns a score

ci that quantifies the likelihood that the pocket is a viable binding

site for ligands. Figure 2 presents an example of the subpockets

identified using CAVIAR.

We defined P = {p1, p2, . . . , pn} as the set of all identified

pockets within a protein structure, where pockets are indexed such

that a lower index corresponds to a higher CAVIAR score, that is,

ci ≥ cj for i < j.

For each pocket pi, let Si denote its set of subpockets. We

introduce a constant M ∈ N, representing the maximum allowable

total number of subpockets used as the model input. The collective

set S =
⋃n

i=1 Si aggregates subpockets from all pockets, subject

to the constraint |S| ≤ M . Each subpocket si is assigned a rank

ki, such that si ∈ Ski
.

An individual graph was generated for every subpocket within

set S. Unlike the cohesive structure of an entire protein, the

subpockets may be composed of several disconnected segments.

To ensure clarity of representation, smaller fragments containing

fewer than five atoms were omitted, retaining only the atoms in

the principal fragments. If |S| < M , placeholder graphs comprising

a single node with null embedding are added to maintain the

consistency.

Finally, each of the M graphs was processed using a GCN with

max and weighted pooling. The same set of weights was applied to

all the graphs to produce an M × d embedding. This embedding

represents a detailed summary of the features of the subpockets.

2.3.2. Seq-Graph Fusion Module

The Seq-Graph Fusion Module (SGFM) was designed to enhance

the GNN’s encoding abilities by leveraging large language models.

We represent the structure of a protein as a residue-level graph,

denoted by G = (E, V ), where V and E represent nodes and

edges, respectively. V corresponds to amino acid residues, and E

is established based on three types of interactions: peptide bonds,

hydrogen bonds, and the K-nearest neighbors algorithm (with k =

5).

For the node features of the protein graph, we feed amino

acid sequences into the protein language model ESM-2[Lin et al.,

2023], a state-of-the-art model trained on approximately 65 million

unique sequences. This process generated features for each residue,

represented as h ∈ RN×1280. To enrich these features, we

concatenated them with additional biological information about

amino acids, specifically their electrostatic properties, which serve

as node attributes for the protein graph.

Expanding this approach to drug molecules, we first

constructed a drug graph from the SMILES representation using

RDKit[Landrum et al., 2021]. The SMILES strings were then

processed using ChemBERTa[Ahmad et al., 2022], a specialized

language model trained on 77 million SMILES strings. This yields

features h′ ∈ RN×384 for each SMILES token, from which we

extract only the features corresponding to the actual atoms to be

used as node attributes for the drug graph. Similar to the protein

graph, we augmented these features with the chemical properties

of the atoms for a more comprehensive representation.

Finally, the constructed protein and drug graphs were

processed using distinct GCNs with max and weighted pooling

layers. This setup yielded a unified representation with dimensions

d for proteins and drugs.

2.3.3. Interaction Module

The Transformer Interaction Module models drug-protein

interactions by incorporating both overall structural and

subpocket-specific details. To begin, it combines drug, protein,

and subpocket embeddings into a matrix X ∈ R(M+2)×d, where

M denotes the number of subpockets, and d is the embedding

dimension.

To capture positional relationships within this matrix, we

modified the standard transformer encoder to include a positional

encoding scheme based on pocket indices, establishing links

between each subpocket and its respective pocket, while also

conveying the relative importance of each pocket. The positional

encoding function is defined as follows:

Pos(x) =

{
ki, if x = si (subpocket)

0, if x = drug or protein

In this formulation, ki represents a unique positional value

assigned to each subpocket si, capturing both the pocket

association and the subpocket’s rank concerning drug-binding
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Fig. 1: Overview of SP-DTI. Our proposed framework includes the following main steps: (1) Preprocessing, which involves generating

3D protein structures using AlphaFold and identifying subpockets of proteins using CAVIAR. Please refer to Figure 2 for subpockets

identification illustration and the original CAVIAR paper for detailed algorithm. (2) Seq-Graph Fusion, where ESM-2 and ChemBERTa

are used to create embeddings for proteins and drugs, respectively, and these embeddings are added as additional node features for

GCNs. (3) Subpocket Encoding, which constructs atom-level graphs for each subpocket and processes them through a shared weight

GCN. (4) Interaction Modeling, using a transformer to model the interactions between subpockets, global protein representations, and

global drug representations. (5) Prediction, which concatenates the drug and protein representations from the transformer to predict the

interaction likelihood for the drug-protein pair.

potential. Drug and protein embeddings are assigned a positional

encoding of zero, reflecting their distinct, non-sequential roles

in the interaction module. The encoder then performs multi-

head attention on X, producing an updated matrix X′ ∈
R(M+2)×d. This updated representation is pivotal for capturing

the interactions among the drug, protein, and subpocket

embeddings.

To determine the probability of interaction, the drug and

protein embeddings are concatenated to form a single embedding

O ∈ R2d, which is enriched with knowledge of the pocket

information captured through the attention mechanism. This

consolidated embedding vector is then passed through a multilayer

perceptron (MLP). A linear layer, parameterized by a weight

matrix Wo and bias vector bo, processes the output of the MLP:

σ(o) = 1
1+exp(−o)

, where o = Wo ·MLP(O)+ bo. This probability

score indicates the potential for interaction between the drug and

the target protein.

During training, the network is optimized using the binary

cross-entropy loss, defined as L = − [Y log(P ) + (1− Y ) log(1− P )],

where Y is the ground truth label and P represents the predicted

probability of interaction [Huang et al., 2020]. All parameters are

updated jointly via backpropagation.

3. Experiments and Results

3.1. Implementation

SP-DTI was implemented using PyTorch[Paszke et al., 2019] and

FlexMol [Liu et al., 2024], a toolkit for efficiently constructing

and evaluating DTI models. The models were trained with a

batch size of 32 for 30 epochs using the Adam optimizer with

a learning rate of 0.0001. The model typically converges between

12 and 15 epochs. All the experiments were conducted using an

NVIDIA V100 GPU. For the Subpocket Modeling Module, the

maximum number of supported subpockets was set to 30. In

the transformer interaction layer, the input embedding size was

128, with four attention heads and an intermediate dimension of

512. The dropout rate was set at 0.1. The maximum number of

subpockets, M, was set to 30. A full list of hyperparameters is

provided in Supplementary Table S1.

3.2. Experimental Setup

DatasetWe utilized the same datasets and preprocessing methods

as the MolTrans framework to evaluate the drug-target interaction

performance[Huang et al., 2020]. Our setup also integrated

AlphaFold2-generated structures to enrich the datasets.

Specifically, BIOSNAP includes 4, 510 drugs and 2,

181 protein targets, resulting in 13, 741 DTI pairs from

DrugBank[Marinka Zitnik and Leskovec, 2018]. Notably,

BIOSNAP includes only positive DTI pairs, while negative pairs
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Fig. 2: Illustration of subpockets identified by the CAVIAR

algorithm. The middle blue pocket is divided into multiple

subpockets of varying colors. Lighter blue indicates a higher

CAVIAR score, meaning that the subpocket is more likely to

become a binding site of the ligands. The magenta pockets on the

top left and bottom right are pockets that cannot be decomposed

into smaller subpockets, therefore requiring the entire pocket as

the input.

are generated by sampling from unobserved interactions. The

DAVIS dataset contains Kd values for 68 drugs and 379 proteins

[Davis et al., 2011], with pairs below a Kd of 30 units classified

as positive. An equal number of negative pairs were added for

balanced training. The dataset statistics after pre-processing are

presented in Table 1.

Table 1. Description and statistics of the processed benchmark datasets

Dataset # Drugs # Proteins # Pos Interactions # Neg Interactions

BIOSNAP 4510 2181 13741 13741

DAVIS 68 379 1506 9597

Metrics We used ROC-AUC (area under the receiver operating

characteristic curve) and PR-AUC (area under the precision–recall

curve) to measure binary classification performance. Additionally,

we evaluated sensitivity and specificity, using the threshold that

achieved the best F1 score on the validation set.

Evaluation Strategies The dataset was divided into training,

validation, and testing sets. To thoroughly assess the robustness

of the model, we employed three splitting strategies: random split,

unseen drug/protein split, and cross-domain split. The specific

methods used for each split are detailed in the corresponding

sections. The best-performing model was selected based on the

ROC-AUC performance on the validation set.

3.3. Baseline Models

We evaluated our model against several state-of-the-art models in

drug-tatget interaction prediction, selected for their prominence

in the field and their diverse methodological approaches:

1. Traditional ML Methods: SVM[Cortes and Vapnik, 1995],

RF[Breiman, 2001], and LR[Cox, 1958] were applied to

the concatenated fingerprint ECFP4 and Protein Sequence

Composition(PSC)[Cao et al., 2013] features.

2. GNN-CPI[Tsubaki et al., 2018]: A graph neural network was

employed to encode drugs, and a CNN was used to encode

proteins. The latent vectors were concatenated for interaction

prediction.

3. DeepDTA[Öztürk et al., 2018]: CNNs were used to process

both SMILES strings and protein sequences, extracting local

residue patterns.

4. DeepConv-DTI[Lee et al., 2019]: CNNs and a global max

pooling layer were utilized to capture local patterns of varying

lengths in protein sequences, and a fully connected layer was

used to process the drug fingerprint ECFP4.

5. MolTrans[Huang et al., 2020]: Sub-structural pattern mining

and an augmented transformer encoder were employed to

model the semantic relations among sub-structures.

6. DrugBAN[Bai et al., 2023]: An interpretable bilinear

attention network was applied to model local interactions

between drug molecular graphs and target protein sequences.

7. 3DProtDTA[Voitsitskyi et al., 2023]: AlphaFold’s structure

predictions and graph representations of proteins were utilized

for drug-target affinity prediction, with graph neural networks

used to process these representations.

3.4. Testing on Random Split

For both the DAVIS and BIOSNAP datasets, we conducted a

random split in the ratio of 7:2:1 for training, validation, and

testing. The experimental results are presented in Table 2. Figure

4 shows a comparison of SP-DTI with the top five baselines. As

shown, SP-DTI consistently outperforms all baselines in terms of

ROC-AUC and PR-AUC across both datasets. Notably, SP-DTI

demonstrated a relative percentage improvement of up to 14%

in the PR-AUC compared to the best-performing baseline on the

DAVIS dataset.

3.5. Testing on Unseen Drug/Protein Split

Unseen drug and target settings are crucial for assessing the

predictive power of the model in real-world scenarios where novel

drug-target pairs are constantly emerging. The split method was

adapted from MolTrans. Specifically, 20% of the drug/target

proteins and all DTI pairs associated with these drugs and

targets were selected as the test set. Table 3 and Figure 5 show

that SP-DTI has a competitive performance against SOTA deep

learning baselines in both settings. We observed that all other

baselines experienced a significant drop in relative performance

for unseen proteins (> 12%), whereas our method experienced

only a 6% drop. One reason SP-DTI performs well in the unseen

protein setting is the integration of pre-trained ESM features.
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Table 2. Performance comparison on BIOSNAP and DAVIS Random Split

Method ROC-AUC PR-AUC Sensitivity Specificity

Dataset 1: BIOSNAP

LR 0.846±0.004 0.850±0.011 0.755±0.039 0.800±0.018

SVM 0.862±0.007 0.864±0.004 0.777±0.011 0.711±0.042

RF 0.860±0.005 0.886±0.005 0.804±0.005 0.823±0.032

GNN-CPI 0.879±0.007 0.890±0.004 0.780±0.014 0.819±0.012

DeepDTA 0.876±0.005 0.883±0.006 0.781±0.015 0.824±0.012

DeepConv-DTI 0.883±0.002 0.889±0.005 0.770±0.023 0.832±0.016

MolTrans 0.895±0.002 0.901±0.004 0.775±0.032 0.851±0.014

DrugBAN 0.903±0.005 0.902±0.004 0.820±0.021 0.847±0.010

3DProt-DTA 0.891±0.004 0.901±0.008 0.826±0.017 0.806±0.021

SP-DTI 0.931±0.006 0.930±0.005 0.863±0.024 0.857±0.011

Dataset 2: DAVIS

LR 0.835±0.010 0.232±0.023 0.699±0.051 0.842±0.033

SVM 0.838±0.006 0.256±0.017 0.716±0.041 0.837±0.018

RF 0.845±0.008 0.253±0.020 0.735±0.038 0.859±0.021

GNN-CPI 0.840±0.012 0.269±0.020 0.696±0.047 0.842±0.039

DeepDTA 0.880±0.007 0.302±0.044 0.764±0.045 0.865±0.020

DeepConv-DTI 0.884±0.008 0.299±0.039 0.754±0.040 0.880±0.024

MolTrans 0.907±0.002 0.404±0.016 0.800±0.022 0.876±0.013

DrugBAN 0.910±0.006 0.396±0.022 0.794±0.041 0.885±0.023

3DProt-DTA 0.914±0.005 0.395±0.023 0.799±0.041 0.901±0.018

SP-DTI 0.934±0.004 0.462±0.019 0.837±0.036 0.884±0.015

Table 3. Performance on BIOSNAP Unseen Drug/Protein Split

Settings DeepDTA DeepConv-DTI MolTrans DrugBAN 3DProt-DTA SP-DTI

Unseen Drugs 0.849 ± 0.007 0.847 ± 0.009 0.853 ± 0.011 0.872 ± 0.005 0.858 ± 0.006 0.894 ± 0.009

Unseen Protein 0.767 ± 0.022 0.766 ± 0.022 0.770 ± 0.029 0.771 ± 0.024 0.782 ± 0.024 0.873 ± 0.019

These features capture comprehensive evolutionary and structural

information from large-scale protein datasets, allowing the model

to generalize effectively to unseen proteins.

3.6. Testing on BIOSNAP Cross-Domain Split

Cross-domain testing, in which the test set is both unseen and

outside the learned distribution, presents the most challenging

scenario. We adopted the cross-domain setup from the DrugBAN

paper[Bai et al., 2023], utilizing single-linkage clustering for drugs

and proteins based on ECFP4 fingerprints and pseudo amino

acid composition (PSC)[Cao et al., 2013]. After clustering, we

Table 4. Comparison of the Cross-Domain Performance on BIOSNAP

MolTranscdan DrugBANcdan 3DProt-DTA SP-DTI

ROC-AUC 0.656 ± 0.028 0.684 ± 0.026 0.663 ± 0.031 0.773 ± 0.025

Note: cdan indicates training using Conditional Domain

Adversarial Network (CDAN) with additional unlabeled data from

target domain data.

randomly select 60% of the drug clusters and 60% of the protein

clusters. All drug-target pairs between selected drugs and proteins

were considered source domain data, while pairs involving the

remaining clusters formed the target domain data. The training

set comprised all the labeled data from the source domain, and

the test set consisted of 20% of the target domain data. Table 4

demonstrates the strength of SP-DTI in generalizing the prediction

performance across domains.

3.7. Model interpretation

In this work, the attention mechanism allows the model to

predict which protein binding sites are most likely to bind to

a given ligand. These probabilities were represented by the

attention matrix generated by the model. For our case study,

we selected the crystal structure of HIV protease D545701 bound

to GW0385 (PDB: 2FDD). Using CAVIAR, we identified three

subpockets within this structure. Additionally, we included five

randomly selected regions from the unbound parts of the protein

to simulate potential false positives identified by CAVIAR. The

attention visualization is presented in Figure 3, demonstrating
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Fig. 3: (Left) A line plot of self-attention mechanism weights for each protein feature in the proposed method using HIV protease D545701

as the protein and GW0385 as the ligand. Here, gp denotes the global protein feature, and si represents the i-th subpocket. (Right)

Projected regions representing the top three subpockets with the highest attention weights, which correspond precisely to the actual

binding positions of the ligand (magenta).

Fig. 4: Comparison of SP-DTI with the top 5 baseline models:

(Top) Area Under the Curve (AUC) for random splits in the test

set; (Bottom) Precision-Recall AUC (PR-AUC) for random splits

in the test set.

that during prediction, global protein embedding receives more

attention than all subpockets; notably, the three subpockets

with the highest attention weights correspond precisely to the

experimentally verified binding sites. We further provide a

heatmap representing the attention matrix in Supplementary

Figure S2. This demonstrates that the interaction module not

only improves model performance but also enhances model

interpretability.

3.8. Ablation Study

This ablation study aimed to determine the contribution of each

component to our model. We assessed their impact on the overall

Table 5. Results of the Ablation Study on BIOSNAP

Settings ROC-AUC PR-AUC

SP-DTI 0.931 ± 0.006 0.930 ± 0.005

w/o subpocket 0.923 ± 0.005 0.924 ± 0.003

pocket 0.926 ± 0.004 0.923 ± 0.007

w/o pre-train 0.913 ± 0.003 0.911 ± 0.004

w/o interaction 0.920 ± 0.005 0.921 ± 0.002

w/o fusion 0.925 ± 0.006 0.926 ± 0.006

performance by systematically removing or altering specific layers

or features. The configurations tested were as follows:

• w/o subpocket: Removing the subpocket encoder.

• pocket: Using pockets generated by the convex hull algorithm

instead of subpockets as the input.

• w/o pre-train: Excluding the additional node features from

pre-trained language models.

• w/o interaction: Removing the transformer module used to

model the interaction and directly concatenating features from

the three encoders.

• w/o fusion: Concatenation is used to integrate features from

large language models and graph features instead of SGFM.

From Table 5, it is evident that features from the pre-trained

language models have the strongest influence on performance.

The subpocket encoder, interaction layer, and fusion module also

significantly contribute to the overall performance of the model.

Specifically, removing the subpocket module or replacing it with

a pocket approach both result in a decrease in performance.
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Fig. 5: Comparison of SP-DTI with the top 5 baseline models across different settings (random splits, unseen drug, and unseen protein).

There is a drop in performance for each model when encountering unseen drugs or proteins, but SP-DTI has the highest ROC-AUC

under all settings and experiences the lowest drop.

3.9. Discussion

Our results show that SP-DTI outperforms baseline models,

particularly in unseen protein and cross-domain settings. Baseline

models struggle in these scenarios due to overfitting in protein

encoding. Unlike drugs, which typically consist of fewer than

a hundred atoms, proteins can contain tens of thousands.

This complexity, combined with the limited number of unique

proteins in DTI datasets (e.g., 379 in DAVIS and 2,181 in

BIOSNAP), makes it challenging for deep learning models to

achieve generalizable representations. This explains why baseline

models exhibit only minor performance drops in unseen drug

settings but experience more significant declines in unseen protein

or cross-domain settings.

To address this, our encoder leverages pretrained language

models trained on millions of unlabeled protein sequences and

integrates them with graph neural networks to enhance the

generalizability of protein encodings while preserving important

geometric information. Additionally, our approach incorporates

subpocket information, enabling detailed atom-level encoding of

proteins alongside global amino-acid level graphs. This dual-level

encoding captures both the broader structural context and the

fine-grained details of protein interaction sites, resulting in a more

accurate and biologically relevant representation. The contribution

of each component to our model is validated through ablation

studies.

The key contributions of SP-DTI include its high prediction

accuracy, model robustness, and interpretability of results.

In real-world applications, where the chemical and genomic

spaces are vast, DTI pairs are often dissimilar to the training

set[Bai et al., 2023]. SP-DTI demonstrates not only strong

performance in random split settings but also robustness in

unseen and cross-domain settings, highlighting its potential for

real-world applicability. By using deep learning to identify DTI

pairs, SP-DTI can significantly narrow the search space for

compound candidates, thereby reducing the costs associated with

pharmaceutical research.

A further strength of SP-DTI is to enable interpretation, which

is crucial for drug discovery. Through the use of attention maps

from the transformer module, SP-DTI provides insights into the

specific protein binding subpockets most likely to interact with a

given ligand, as demonstrated in our case study, allowing scientists

to understand why a particular interaction is predicted. This

transparency is believed to reduce the risk of false positives and

accelerate the drug discovery process.

4. Conclusion

In this study, we introduce SP-DTI, a subpocket-informed

transformer model designed for drug-target interaction prediction.

The incorporation of subpocket information and the Seq-Graph

Fusion Module effectively enhanced the predictive power of

the model. Our comprehensive evaluations in in-domain and

cross-domain settings demonstrate that SP-DTI consistently

outperforms state-of-the-art baselines in all cases, providing

improved accuracy and robustness.

Code and Data Availability

SP-DTI is open-sourced and available on GitHub at https:

//github.com/Steven51516/SP-DTI. The random and unseen

drug/protein data splits for the DAVIS and BioSNAP datasets

were obtained from the MolTrans repository at https://github.

com/kexinhuang12345/MolTrans. The cross-domain split for the

BioSNAP dataset were obtained from the DrugBAN repository at

https://github.com/peizhenbai/DrugBAN.
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