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ABSTRACT

Accurate protein identification from mass spectrometry (MS) data is fundamental
to unraveling the complex roles of proteins in biological systems, with peptide
sequencing being a pivotal step in this process. The two main paradigms for peptide
sequencing are database search, which matches experimental spectra with peptide
sequences from databases, and de novo sequencing, which infers peptide sequences
directly from MS without relying on pre-constructed database. Although database
search methods are highly accurate, they are limited by their inability to identify
novel, modified, or mutated peptides absent from the database. In contrast, de novo
sequencing is adept at discovering novel peptides but often struggles with missing
peaks issue, further leading to lower precision. We introduce SearchNovo, a novel
framework that synergistically integrates the strengths of database search and de
novo sequencing to enhance peptide sequencing. SearchNovo employs an efficient
search mechanism to retrieve the most similar peptide spectrum match (PSM) from
a database for each query spectrum, followed by a fusion module that utilizes
the reference peptide sequence to guide the generation of the target sequence.
Furthermore, we observed that dissimilar (noisy) reference peptides negatively
affect model performance. To mitigate this, we constructed pseudo reference PSMs
to minimize their impact. Comprehensive evaluations on multiple datasets reveal
that SearchNovo significantly outperforms state-of-the-art models. Also, analysis
indicates that many retrieved spectra contain missing peaks absent in the query
spectra, and the retrieved reference peptides often share common fragments with
the target peptides. These are key elements in the recipe for SearchNovo’s success.
The code for reproducing the results are available in the supplementary materials.

1 INTRODUCTION

The identification of the proteins present in collected biological samples is a fundamental task in
biomedicine, steering a better understanding of disease etiology and pathology, which is essential
for the identification of new therapeutic targets for developing new treatments or drugs (Uzozie &
Aebersold, 2018; Lin et al., 2020). Tandem mass spectrometry (MS/MS) stands out as the only
high-throughput technique capable of analyzing the protein composition in biological samples due to
its high sensitivity and specificity (Aebersold & Mann, 2003). In bottom-up proteomics (Zhang et al.,
2013), proteins are digested into smaller peptide fragments, which are then analyzed using mass
spectrometry to determine the amino acid sequences and, ultimately, to identify the original proteins.

The core of protein identification lies in the challenge of peptide sequencing, where the goal is to
determine the peptide amino acid sequence for each observed mass spectrum. Two primary paradigms
exist to tackle this problem: database search (Nesvizhskii, 2010; Griss, 2016) and de novo peptide
sequencing (Tran et al., 2017). Database search approaches involve matching the observed spectra to
pre-constructed peptide-spectrum match (PSM) databases, selecting the most similar match as the
identification results. For example, SEQUEST (Eng et al., 1994) matches observed MS/MS against a
protein sequence database and scores the matches based on the correlation between experimental and
peptides’ theoretical spectra. MaxQuant (Cox & Mann, 2008) uses the Andromeda search engine
for database search, allowing for highly accurate protein identification, especially in large-scale
proteomics experiments. Despite the high precision, these tools are inherently limited by the scope of
the database and cannot identify novel proteins that are not included in the pre-constructed database.
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Figure 1: The semantic diagrams of database search, de novo sequencing and our SearchNovo.

On the other hand, de novo sequencing methods predict peptide sequences directly from the observed
mass spectra without dependence on external databases. This makes it indispensable for applications
where databases are incomplete or unavailable, such as antibody sequencing (Tran et al., 2016),
human leukocyte antigen (HLA) neoantigen discovery (Tran et al., 2020), and the identification of
novel proteins and peptides not yet cataloged in existing databases (Vitorino et al., 2020). This family
began with early rule-based methods that manually interpreted tandem mass spectra and infer peptide
sequences (Eng et al., 1994; Li et al., 2005; Kong et al., 2017). Modern deep learning methods, such
as DeepNovo (Tran et al., 2017), PointNovo (Qiao et al., 2021), InstaNovo (Eloff et al., 2023) and
Casanovo (Yilmaz et al., 2022), usually train encoder-decoder models to predict peptide sequence for
observed spectrum, which have improved the models’ ability to identify novel proteins. Despite the
remarkable success, the performance of these methods remains unsatisfactory, partly due to missing
signal peaks in mass spectra data and a lack of additional cues to guide peptide sequence inference.

To capitalize on the strengths and compensate for the weaknesses of the above two primary paradigms,
we integrate database search and de novo sequencing into a unified framework, SearchNovo, which
contains two core modules: retriever and fusion module. In the retriever, for each query spectrum,
we design a novel and efficient strategy to search for the top one most similar spectrum from the
database with mass constraints. In fusion module, we employ a novel fusion layer to fuse the prefix
peptide sequence and retrieved peptide sequence, with the expectation that the latter can provide the
clues for the generation of the target peptide sequence. Additionally, when numerous query spectra
are matched with low-similarity reference peptide sequences (noisy reference peptides) from the
database, the model’s performance degrades significantly. To further address this issue, we construct
pseudo reference PSMs that could prevent the model from over-relying on noisy reference spectra
when generating target peptide sequences. We highlight the core contributions of this work as follows:

• As illustrated in Figure 1, we integrate two primary paradigms—database search and de
novo sequencing—into a unified framework called SearchNovo, enjoying the strengths of
both paradigms: high sequencing precision and the strong ability to identify novel proteins.

• We design the retriever and fusion module to maximize the utilization of the retrieved
reference PSMs to guide the generation of target peptide sequence. Additionally, we
implemented a straightforward yet effective strategy to reduce the risk of the model over-
relying on noisy (dissimilar) reference spectra when inferring the target peptide sequence.

• As revealed in section 5.4, the retrieved PSMs by SearchNovo contain the missing signal
peaks in the query spectra and common peptide fragments in the target sequence, resulting
in its superior performance compared to state-of-the-art methods across multiple datasets.

2 BACKGROUND

Protein identification is a critical procedure in discovering drug targets and disease biomarkers,
addressing a major bottleneck in the AI for Drug Discovery and Development (AIDD) pipeline.
While the AI community has focused extensively on drug design with known protein targets, the
challenge of identifying these key protein targets using AI remains underexplored. In this section, we
provide a brief overview of the general pipeline for protein identification using mass spectrometry,
aiming to foster greater understanding and attention to this important task from the AI community.
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Figure 2: The semantic diagram of protein identification using mass spectrum.

As depicted in Figure 2, the process of mass spectrometry-based proteomics typically begins with
the digestion of proteins into smaller peptides. These peptides are then ionized and introduced into
the mass spectrometer for analysis. Identifying peptide sequences primarily involves two crucial
steps: the first scan (MS1) and the second scan (MS2). During the MS1 phase, the mass spectrometer
measures the mass-to-charge ratio (m/z) of intact peptide ions, generating a spectrum that displays
peaks corresponding to various peptides, referred to as precursors. Each peak signifies a specific
peptide present in the biological sample, and its intensity indicates the peptide’s relative abundance.
In the subsequent MS2 phase, a chosen precursor ion undergoes fragmentation into smaller ions,
typically at the peptide bond level, yielding a detailed spectrum known as the MS2 spectrum. Each
peak in this spectrum comprises a tuple that includes the m/z value and its associated intensity. The
goal of peptide sequencing is to deduce the amino acid sequence of the peptide directly from the MS2
spectra and the precursor information (mass and charge of the intact peptide). Ultimately, we can
reconstruct the entire protein sequence using protein sequence assembly techniques (Liu et al., 2015).

3 RELATED WORK

There exist two lines of works for peptide sequencing. The first line is database search, where we
compare the observed mass spectra against the theoretical fragmentation mass spectra of peptide
sequences in the database and pick the peptide sequence with the highest matching score as the
identification result. Typical methods and tools include SEQUEST (Eng et al., 1994), pFind (Li et al.,
2005), MaxQuant (Cox & Mann, 2008), MSFragger (Kong et al., 2017) and Open-pFind (Sun et al.,
2019). However, these methods cannot sequence the peptides out of the pre-constructed database.

The second line of works is de novo peptide sequencing, where we predict the peptide sequences
for observed spectra without relying on pre-constructed databases. Initially, researchers cast the de
novo peptide sequencing task as finding the largest path in the spectrum graph (Dančı́k et al., 1999;
Taylor & Johnson, 2001) or compute the best sequences whose fragment ions can best interpret the
peaks in the observed MS2 spectrum using Hidden Markov Model (Fischer et al., 2005) or dynamic
programming algorithm (Ma et al., 2003). With the prosperity of deep learning, DeepNovo (Tran et al.,
2017) is the first method applying deep neural networks to the task of de novo peptide sequencing. It
regards the task as the image caption (Stefanini et al., 2022) in computer vision and incorporates
the encoder-decoder architecture to predict the peptide sequence. To annotate the high-resolution
MS data, PointNovo (Qiao et al., 2021) adopts an order invariant network structure for peptide
sequencing. More recently, Casanovo (Yilmaz et al., 2022) first employs a transformer encoder-
decoder architecture (Vaswani et al., 2017) to predict the peptide sequence for the observed spectra.
Following Casanovo, AdaNovo (Xia et al., 2024) proposes conditional mutual information-based
re-weighting methods to help identify PTMs. Despite the remarkable advancements, the performance
of de novo peptide sequencing methods remains inferior to database search, partially due to missing
signal peaks in mass spectrum data and a lack of additional clues to guide peptide sequence generation.
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4 METHOD

4.1 FORMULATION

We represent the peaks in an MS2 spectrum as x = {(mi, ti)}Mi=1, where each peak is defined
by a pair (mi, ti), with mi representing the mass-to-charge ratio (m/z) and ti representing the
intensity. The number of peaks, M , varies between spectra. The precursor ion is described as
z = (mprec, cprec), where mprec ∈ R represents the precursor mass (the total mass of the peptide
sequence to be predicted), and cprec ∈ {1, 2, . . . , 10} is the charge state. A peptide sequence is
denoted by y = (y1, y2, . . . , yN ), where yi is the i-th amino acid in the sequence, and N is the total
number of amino acids in the peptide. The prefix subsequence of y up to position j is written as y<j .

The task of de novo peptide sequencing models is to predict each amino acid yj conditioned on the
MS2 spectrum x, the precursor ion z, and the previously generated sequence y<j . The probability
distribution for a peptide sequence is modeled as:

P (y | x, z; θ) =
N∏
j=1

p(yj | y<j ,x, z; θ), (1)

where j is the index for the current amino acid position, and θ represents the model parameters.
Considering that both x and z can be derived from the spectrum, for simplicity, we will refer to them
collectively as x in the following discussion. Common approaches, such as those in (Tran et al., 2017;
Yilmaz et al., 2022; Xia et al., 2024), minimize the cross-entropy (CE) loss to optimize the model:

ℓ(θ) = −
N∑
j=1

log p(yj | y<j ,x; θ). (2)

During inference, the models typically use autoregressive decoding to predict each amino acid and
apply heuristic search like beam search (SCIENCE, 1977) to generate candidate sequence y∗.

In contrast, database search approaches solve the peptide sequencing problem by comparing the
observed spectrum to a database of known peptides. For a given spectrum x, the goal is to identify
the peptide y∗ in the database that best matches the spectrum by maximizing a similarity function:

x∗,y∗ = arg max
(x′,y′)∈D

sim(x, (x′,y′)), (3)

where D is the PSM database. Various similarity scoring methods, including cross-correlation (Eng
et al., 1994; 2013) or machine learning-based models (Liu et al., 2024; Degroeve & Martens, 2013),
are used to compute sim(x, (x′,y′)), and the top-scoring peptides are returned as the predictions.

4.2 MODEL ARCHITECTURES

As shown in Figure 3, SearchNovo consists of a peak embedding layer (peak encoder), spectrum
encoder, fusion layer and peptide decoder. In order to feed the mass spectrum peaks to the spectrum
encoder, we regard each mass spectrum peak (mi, ti) as a ‘word’ in natural language processing
and obtain its embedding hi by individually encoding its m/z value (mi) and intensity value (ti)
before combining them through summation. The detailed description of the peak embedding layer
can be found in Appendix A.1. And then, we feed the peak embeddings h = {hi}Mi=1 to the spectrum
encoder that consists of multiple transformer layers with Multi-Head Self-Attention (MHA). Similar
to natural language processing (Kenton & Toutanova, 2019), we select the top 150 peaks with the
highest intensity values. If the number of peaks exceeds 150, only these top 150 peaks are used, as
they are more likely to represent signal peaks. If the number of peaks is fewer than 150, we pad the
sequence to 150 embeddings using a special token [PAD].

As for the peptide sequence, the amino acid vocabulary encompasses the 20 canonical amino acids,
a special [EOP]1 token indicating the end of peptide sequence and several Post-Translational
Modifications (PTMs). Here, the PTMs can be regarded as variants of canonical amino acids. We
summarize the types of PTMs in the experimental datasets in Appendix A.3. And then, we employ an

1End Of Peptide
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Figure 3: The overview of SearchNovo. We provide the formulation of MHA(·, ·) in Appendix A.2.

amino acid embedding layer (denated as AA. Embedding in Figure 3), a learnable lookup table that
maps each token in the vocabulary to a fixed-size vector. Also, we apply the positional embedding
(denoted as Pos. Embedding in Figure 3) from Transformer (Vaswani et al., 2017) to capture
the positional information of each amino acid within the peptide sequence. The final amino acid
embedding is obtained by summarizing AA. Embedding and Pos. Embedding. Similarly, we obtain
the precursor embedding by individually encoding its mass (mprec) and charge state (cprec) before
combining them through summation. The detailed embedding process is formulated in Appendix A.1.
And then, we prepend the precursor embedding to the amino acid embedding sequence and input
this combined sequence into the fusion layer. Kindly note that, for simplicity, we have omitted the
precursor embeddings before all peptide sequences in Figure 3. Finally, we feed the fused embedding
sequence y′

<j to the peptide encoder, which contains multiple identical transformer layers with
causally masked multi-head self-attention and cross-attention to decode the target peptide sequence.

4.3 RETRIEVER

For each query spectrum, we aim to search for the most similar peptide-spectrum match (PSM) from
the database. The most straightforward approach is to compute the similarity between the query
spectrum and every spectrum in the database, selecting the peptide sequence corresponding to the
spectrum with the highest similarity score as the reference. However, this method is computationally
expensive. To mitigate this issue, we first narrow the database search range by leveraging the precursor
mass of the query spectrum, which represents the total mass of the peptide sequence. Specifically, for
each query spectrum x, we select a subset of PSMs Dx from the database D where the difference
between the precursor mass and peptide amino acids total mass is within ± 20 Da (Dalton, a unit
of mass commonly used to express the mass of atoms, molecules, and subatomic particles). We
then calculate the similarity between x and each spectrum in Dx using the widely-used spectral
similarity score MatchMS (Florian et al., 2020; de Jonge et al., 2024), selecting the peptide sequence
ys corresponding to the most similar spectrum xs as the reference peptide sequence:

xs,ys = arg max
(x′,y′)∈Dx

sim(x, (x′,y′)). (4)
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Now, the de novo peptide sequencing task is to predict each amino acid yj with the spectrum x, the
precursor z, the prefix peptide sequence y<j and the reference peptide sequence ys. And thus, the
probability distribution of the peptide sequence y in Eq. 1 can be re-defined as,

P (y | x,xs,ys; θ) =

N∏
j=1

p(yj | y<j ,x,xs,ys; θ), (5)

where θ denotes the model parameters. In the experiments, we regard the training set as the database
and search for the most similar PSM (excluding itself) for each query spectrum in the training set
using the above retriever, and then we store these results for use in subsequent model training.

4.4 FUSION LAYER

The fusion layer contains two multi-head attention mechanisms (MHA). The first, denoted as
MHA(y<j ,y<j), follows the standard Transformer architecture and operates over the prefix sequence
y<j . The second, MHA(y<j ,ys), is designed to extract information from the reference peptide
sequence, where the query comes from y<j and the key and value are derived from the representation
of the reference sequence ys. Due to the limited space, we provide the detailed formula for MHA(·, ·)
in Appendix A.2. Considering that if a reference PSM (xs,ys) is with high similarity to the query
spectrum x, ys should be more helpful to infer the target peptide sequence. Therefore, we take the
similarity into consideration when embed the peptide sequence. Formally,

es = sim(x, (xs,ys))×Es, (6)

where Es is the peptide embedding from the AA. Embedding EAA(·) and Pos. Embedding EPos.(·)
layer,

Es = [EAA.(y1) + EPos.(y1), · · · , EAA.(yN ) + EPos.(yN )], (7)

After applying these two parallel attention mechanisms, the outputs are combined using an Add &
Norm (layer normalization) operation:

y′
<j = Norm (MHA(y<j ,y<j) +MHA(y<j , es)) , (8)

producing a new sequence y′
<j , which is then used as the query input for the subsequent multi-head

cross attention (i.e., MHA(y′
<j ,x)). The following sub-layer is the same as standard Transformer

model (Vaswani et al., 2017).

4.5 ROBUSTNESS TO THE NOISY REFERENCE PSMS

With the reference PSM (xs,ys), we can re-defined the training loss in Eq. 2 for SearchNovo as,

ℓ(θ) = −
N∑
j=1

log p(yj | y<j ,x,xs,ys; θ). (9)

However, as shown in Figure 5, we observe that the model (‘SearchNovo w/o pseudo reference
PSM’) exhibits significantly poorer performance on spectra that lack a similar reference in the
database. Specifically, when the input spectrum is matched to a reference PSM with low similarity
(e.g., similarity scores between 0 and 0.3 in Figure 5), the retrieved reference peptide sequence often
deviates substantially from the target peptide sequence. This mismatch provides minimal useful
information for target peptide sequence generation, leading to a notable decline in the performance.

To further address this issue, we propose a simple-yet-effective method that can prevent the model
from over-relying on dissimilar (noisy) reference spectra when generating target peptide sequence.
Specifically, for each query PSM (x,y) in the training dataset, given that its retrieved reference
PSM is (xs,ys), we construct a pseudo reference PSM as ([PAD],[EOP]), where the special
token [PAD],[EOP] create an empty reference PSM and it teaches the model to generate the target
peptide sequence without relying on the true reference PSM (xs,ys). Formally, we minimize the
following joint loss function for SearchNovo:

ℓ(θ) = −
N∑
j=1

(log p(yj | y<j ,x,xs,ys; θ) + λ× log p (yj | y<j ,x,[PAD], [EOP]; θ)). (10)
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where λ > 0 is a trade-off coefficient. In experiments, we implement the similarity
sim(x, ([PAD],[EOP])) in Eq.6 as 1. This makes it possible that a single unified model can handle
both scenarios where reference PSM is similar or dissimilar to the query spectrum. Kindly note
that the second term of Eq. 10, i.e. log p (yj | y<j ,x,[PAD], [EOP]; θ), cannot be replaced with
log p (yj | y<j ,x; θ), as the SearchNovo model requires the reference PSMs as inputs. Even if the
pseudo reference PSM is empty, it should still be included with placeholders like ([PAD],[EOP]).

In the inference phase, we regard each mass spectrum in the test set as the query and search against
the training set. The retrieved reference peptide sequence along with the prefix target sequence are
fed into the fusion layer and the decoder at each decoding step. The decoding process concludes
upon predicting the [EOP] token or reaching the predefined maximum peptide length 100 amino
acids. We discuss the computational overhead of SearchNovo in Appendix A.5.

5 EXPERIMENTS

5.1 DATASETS AND METRICS

Previous studies have evaluated model performance on various datasets, with some using different
versions of datasets under the same name (see Appendix A.3 for details). To ensure fairness, we
conducted a comprehensive benchmark of the baseline models and SearchNovo using three datasets:
Seven-species, Nine-species, and HC-PT. These datasets represent a range of spectrum resolutions and
peptide sources, providing a diverse testing ground for performance comparison. The Seven-species
dataset includes low-resolution spectra from seven species, following the leave-one-out approach
from DeepNovo (Tran et al., 2017), where the model is trained on six species and tested on yeast.
The Nine-species dataset, used in studies like DeepNovo (Tran et al., 2017), PointNovo (Qiao et al.,
2021), and Casanovo (Yilmaz et al., 2022), contains high-resolution spectra from nine species and
incorporates three post-translational modifications (PTMs), enabling a comprehensive evaluation of
model performance. Similarly, we also follow the leave-one-out strategy where we train the model on
8 species and evaluate the model on the left yeast dataset. The HC-PT dataset features high-resolution
spectra of synthetic tryptic peptides covering all canonical human proteins and isoforms, including
peptides from alternative proteases and human leukocyte antigen (HLA) peptides, with labels derived
from MaxQuant’s high-confidence search results (Tyanova et al., 2016). Kindly note that the target
peptides in the test sets of the above 3 datasets are not present in the training sets. The database
search methods cannot work on these datasets because they cannot identify unseen or novel peptide
sequences. More information of these datasets can be found in Appendix A.3.

We evaluate model predictions using precision at both the amino acid and peptide levels, following
previous works (Tran et al., 2017; Qiao et al., 2021; Yilmaz et al., 2022). Amino acid-level precision
is calculated as Naa

match/N
aa
pred, where Naa

match represents the number of correctly predicted amino
acids with a mass difference of < 0.1 Da and correct prefix or suffix mass within 0.5 Da. Amino
acid-level precision and recall is then defined as Naa

match /N
aa
pred and Naa

match /N
aa
truth, where Naa

pred and
Naa

truth represent the number of predicted amino acids in predicted peptide sequences and ground truth
peptide sequences, respectively. Similarly, PTMs identification precision and recall can be formulated
as Nptm

match /N
ptm
pred and Nptm

match /N
ptm
truth , where Nptm

match , Nptm
pred and Nptm

truth denote the number of matched
PTMs, predicted amino acids with PTMs and PTMs in ground truth peptide sequence, respectively.
Peptide-level precision, the primary performance metric, is Np

match/N
p
all, where a predicted peptide is

correct only if all amino acids match the ground truth. Given the peptide recall and precision, we also
use the area under the precision-recall curve (AUC) as a summary of de novo sequencing accuracy.

5.2 BASELINES AND EXPERIMENTAL SETUPS

We use 5 representative models as baselines in our experiments: DeepNovo, PointNovo, InstaNovo,
AdaNovo and Casanovo, which we have introduced in the related work section. Although SearchNovo
enjoys the advantages of both database search and de novo sequencing, it is fundamentally a de novo
sequencing method. Moreover, database search methods are not applicable to these datasets where
the test peptides are not present in the training set. Therefore, we did not include a comparison with
database search methods. For training SearchNovo, we used a batch size of 32 and trained the model
for 30 epochs on an Nvidia A100 GPU. The learning rate was set to 0.0004 with a linear warm-up
schedule, and gradient updates were performed using the Adam optimizer (Kingma & Ba, 2014).
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Optimal hyperparameters were selected based on the validation set. For the baseline models, we used
the original hyperparameters from their respective papers. DeepNovo and PointNovo were validated
every 3,000 steps, while the remaining models were validated every 50,000 steps.

5.3 MAIN RESULTS

Table 1: An empirical comparison of models based on amino acid-level and peptide-level metrics.
The top-performing model is highlighted in bold, while the runner-up is underlined. We trained
five models with different random initializations and reported the standard deviation on the HC-PT
dataset. For the other datasets, standard deviations were not reported, as training multiple models on
all datasets would be computationally extensive.

Method
Peptide-level performance Amino acid-level performance

Seven-species Nine-species HC-PT Seven-species Nine-species HC-PT

Prec. AUC Prec. AUC Prec. AUC Prec. Recall Prec. Recall Prec. Recall

DeepNovo 0.204 0.136 0.428 0.376 0.313 ± 0.014 0.255 ± 0.010 0.492 0.433 0.696 0.638 0.531 ± 0.018 0.534 ± 0.015
PointNovo 0.022 0.007 0.480 0.436 0.419 ± 0.008 0.373 ± 0.011 0.196 0.169 0.740 0.671 0.623± 0.015 0.622 ± 0.009
InstaNovo 0.031 0.009 0.164 0.123 0.057 ± 0.008 0.034 ± 0.010 0.192 0.176 0.420 0.395 0.289 ± 0.006 0.285 ± 0.009
AdaNovo 0.174 0.135 0.505 0.469 0.212 ± 0.022 0.178 ± 0.015 0.379 0.385 0.698 0.709 0.442 ± 0.017 0.451± 0.023
Casanovo 0.119 0.084 0.481 0.439 0.211 ± 0.010 0.177 ± 0.014 0.322 0.327 0.697 0.696 0.442 ± 0.016 0.453 ± 0.022

SearchNovo 0.259 0.174 0.550 0.489 0.447 ± 0.013 0.413 ± 0.010 0.489 0.488 0.748 0.746 0.652 ± 0.008 0.658 ± 0.016

Table 2: An empirical comparison of models in terms of their ability to identify PTMs. The best
results and the second best are highlighted with bold and underline, respectively.

Method PTM Recall PTM Prec.
Seven-species Nine-species HC-PT Seven-species Nine-species HC-PT

DeepNovo 0.373 0.529 0.615 ± 0.018 0.391 0.576 0.626 ± 0.013
PointNovo 0.094 0.546 0.740 ± 0.009 0.117 0.629 0.676 ± 0.012
InstaNovo 0.115 0.294 0.261 ± 0.010 0.126 0.443 0.350 ± 0.012
AdaNovo 0.321 0.570 0.482 ± 0.022 0.448 0.652 0.552 ± 0.017
Casanovo 0.251 0.566 0.460 ± 0.015 0.360 0.706 0.501 ± 0.017

SearchNovo 0.447 0.599 0.772 ± 0.011 0.472 0.764 0.715 ± 0.016

SearchNovo outperforms state-of-the-art methods on 3 benchmarking datasets. As shown in
Table 1, SearchNovo shows notable superiority over previous peptide sequencing tools in terms of both
amino acid-level and peptide-level metrics. Also, we observe that SearchNovo also outperforms other
competitors in PTMs identification in Table 2, probably because that the retrieved reference peptide
sequence may contain some PTMs that are difficult to be identified, which provide valuable clues
for the PTMs identification. Also, we can observe that the overall performance on high-resolution
Nine-species and HC-PT datasets is significantly superior to the performance on low-resolution
Seven-species dataset. This phenomenon indicates that higher-resolution data provides more detailed
spectral information, which enhances the model’s ability to accurately infer the peptide sequences.

5.4 WHY SEARCHNOVO CAN ACHIEVE SUPERIOR PERFORMANCE?

Table 3: Comparisons between the target peptide sequence of query spectra and the retrieved
reference peptide sequence from the seven species dataset. ‘(+15.99)’ and ‘(+.98)’ denote the
oxidation-modified (a kind of PTM) and isotopic labeling amino acids before itself, respectively. The
overlapping fragments are underlined.

Target Peptide Sequence of Query Spectra Retrieved Reference Peptide Sequence
IIDASHR IIGPGINK

AGWQGTVTF AGWQGTITF
LTANDVFRK LTANDIFRK

ATPIAEAMMAIVIIDCIIR ATPIAEAM(+15.99) MAIVIIDOIIR
NGAIIAAVQQEGEEIMIISDQGIIVR NGAIIAAVQ(+.98)Q(+.98)EGEEIMIISDQGIIVR

In this subsection, we aim to investigate why SearchNovo can achieve superior performance. Our
findings are as follows:
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(i) Many of the retrieved reference peptide sequences and the target sequences share overlapping
fragments, providing important clues for generating the target sequence. We provide some
examplar target sequence of query spectra and their corresponding reference peptide sequence from
the seven-species dataset in Table 3. As can be observed, there exists notable overlaps between the
pairs and thus the latter provides important clues to guide the generation of the former. Also, their
shared fragments demonstrate various degrees of alignment. In some cases, there is a near-perfect
match (e.g., LTANDVFRK vs. LTANDIFRK), while in others, more differences are apparent. This
phenomenon necessitates the robust methods to prevent the models from over-relying on the noisy
(dissimilar) reference PSM when generating the target peptide sequence.
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(1) (2) (3)

Figure 4: Comparisons between the query spectra and the retrieved reference spectra. The spectra in
the same column represent query-reference pairs.

(ii) The retrieved reference spectra by SearchNovo include some missing signal peaks in the
query spectra, enabling SearchNovo to mitigate the issue of missing peaks. To verify this
point, we annotate the b, y ions (signal peaks) using the pyteomics tool (Goloborodko et al., 2013).
Specifically, we generate the theoretical b and y ions for the peptide sequence, which represent the
expected fragment ions formed from the peptide backbone cleavage during tandem mass spectrometry
(MS/MS). Detailed explanations of b and y ions can be seen in Appendix A.6. And then, we compare
each peak in the query spectrum to the theoretical ions, and the closest match is identified using
a defined tolerance (± 1.0 Da in our experiments). If an observed peak matches a theoretical b or
y ion within the tolerance, it is classified accordingly. As shown in Figure 4, the retrieved spectra
share some common b, y ions (e.g., y2, y4, y5, y6, y8 and b9 in Figure 4(1)) with the corresponding
query spectra, indicating that the retriever can identify similar spectra from the database. More
importantly, the retrieved reference spectra contain some missing peaks (e.g., y4, y6, y10, b12, and
y14 in Figure 4(2)) that should theoretically be present in the query spectra. And thus, they offer
valuable hints that aid in inferring the peptide sequences beyond what is available in the query spectra.

5.5 ABLATION STUDY

(i) The influence of pseudo reference PSM. As shown in Figure 5, we plotted the distribution
histogram of MatchMS similarity scores between each query spectrum and its reference PSM in the
test set. The possible range of MatchMS similarity scores, [0, 1), was divided into ten sub-intervals:
[0, 0.1), [0.1, 0.2), . . . , [0.9, 1.0). It can be seen that SearchNovo without the pseudo reference PSM
performs significantly worse in the [0, 0.3) range compared to higher similarity intervals, indicating
that noisy reference PSMs adversely affect the model’s performance. In contrast, SearchNovo shows
consistently strong performance across the entire similarity range of [0, 1), demonstrating that the
pseudo reference PSMs effectively mitigate the impact of noisy PSMs.

(ii) The influence of hyper-parameter λ. As illustrated in Figure 6, we observe that key metrics
in de novo peptide sequencing, such as Peptide-level Precision and Amino Acid-level Precision,
generally improve with increasing λ. However, when λ becomes sufficiently large, the model’s
performance stabilizes, suggesting that the influence of the pseudo reference PSM has reached a
saturation point. Based on these observations, we set λ = 0.5 for our experiments across the three
datasets for convenience.
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Figure 5: The MatchMS similarity score distribution and the peptide-level precision over different
similarity intervals.
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Figure 6: Amino acid-level (denoted as aa precision in the figure) and peptide-level (denoted as
pep precision in the figure) precision as a function of the hyper-parameter λ.

Table 4: Ablations on the similarity in SearchNovo.

Method Peptide-level Precision Amino Acids-level Precision
Seven-species Nine-species HC-PT Seven-species Nine-species HC-PT

SearchNovo w/o the similarity 0.238 0.472 0.401 0.446 0.721 0.616
SearchNovo 0.259 0.550 0.447 0.489 0.748 0.652

(iii) The influence of the similarity sim(x, (xs,ys)). In SearchNovo, we incorporate the similarity
into the peptide embedding as in Eq. 6. To investigate the influence of the similarity, we remove it
from SearchNovo. As shown in Table 4, the results confirm that the similarity score significantly
enhances model performance by providing key information from highly similar reference PSMs,
which aids in predicting the target peptide sequence. Removing the similarity leads to a marked
decline in performance, underscoring its importance in the SearchNovo framework.

6 CONCLUSION

In this paper, we introduced SearchNovo, a unified framework that combines the advantages of
database search and de novo peptide sequencing to improve peptide sequencing. By incorporating
an efficient search strategy and fusion module, SearchNovo effectively mitigates missing signal
peaks issue, leveraging reference PSMs for enhanced precision. Additionally, the pseudo reference
PSMs prevent the models from over-relying on noisy reference, leading to superior performance
across multiple benchmarking datasets. Moving forward, future work could focus on improving
SearchNovo’s robustness in handling low-quality spectra with multiple noisy peaks and exploring its
potential applications in more challenging domains like single-cell proteomics and metaproteomics.
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A APPENDIX

A.1 PEAK EMBEDDING METHODS

To encode the MS2 peaks for the spectrum encoder, we treat each peak (mi, ti) from the mass
spectrum similarly to a ”word” in natural language processing. We represent it by encoding its m/z
value and intensity separately, and then combine these encodings by summing them. For each peak,
the m/z value is treated as its position, and positional encoding is applied as inspired by (Vaswani
et al., 2017), defined as:

fij = sin

 mi

mmax

mmin

(
mmin

2π

)2j/d
 , for j ≤ d

2
, (11)

fij = cos

 mi

mmax

mmin

(
mmin

2π

)2j/d
 , for j >

d

2
, (12)

where fij represents the j-th component of the embedding for the i-th peak, d is the embedding
dimension, and mmax and mmin are constants that we set to 10,000 and 0.001, respectively. These
positional embeddings ensure that high-resolution m/z values are captured. Following the positional
encoding approach of the original transformer (Vaswani et al., 2017), these embeddings help the
model focus on variations in m/z between peaks, which is essential for accurately determining the
peptide sequence. The intensity values ti are encoded via a linear layer Wg, projecting them into
a d-dimensional space, i.e. gi = Wgti, where Wg ∈ Rd is the linear layer’s weight matrix. The
final embedding for each peak (mi, ti) is obtained by adding the embeddings for intensity and m/z,
hi = gi+fi. Thus, the input to SearchNovo’s spectrum encoder consists of embeddings h = {hi}Mi=1,
where M is the number of peaks in the spectrum. Similarly, the precursor ion z = {(mprec, cprec)}
is embedded using the same sinusoidal positional encoding for mprec, while the precursor charge
state cprec is embedded through a PyTorch embedding layer.

A.2 MULTI-HEAD ATTENTION (MHA)

We present the specific formulation for the multi-head attention mechanism, MHA(·, ·), designed
with H attention heads as follows:

MHA(q,u) = [Att (q, ϕj(u), ψj(u))]
H
j=1 ,

Att(q,u,v) = softmax

(
qu⊤
√
d

)
v.

(13)

In this formulation, q represents the query vector, while u is a matrix composed of two dimensions.
The notation [uj ]

H
j=1 indicates the concatenation of all individual vectors uj . The functions ϕj and

ψj refer to two distinct linear transformations that project one matrix into another. The term 1√
d

serves as a scaling factor, where d denotes the dimensionality of the query vector q. We recommend
consulting the original Transformer paper (Vaswani et al., 2017) for more details.

A.3 DATASETS

Table 5: The datasets statistics of the tree datasets in SearchNovo.

Dataset Avg. PTM class min m/z max m/z train/valid/test num.precusor m/z precusor charge peaks num. intensity peptide len.
Seven-species 719.07 2.42 466.05 956.17 15.79 3 70.17 3997.66 317,009 / 17,740 / 17,049
Nine-species 679.68 2.47 134.91 175082.65 15.01 3 53.03 35932.63 499,402 / 28,572 / 27,142

HC-PT 635.32 2.31 184.21 143363.17 12.53 1 99.99 1999.99 213,284 / 25,718 / 26,536
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Since Peptide-Spectrum Matches (PSMs) data utilized for training and testing are readily accessible
through ProteomeXchange (Vizcaı́no et al., 2014), researchers can easily download various sections
to benchmark their models for de novo peptide sequencing. For instance, the performances of
DeepNovo (Tran et al., 2017) and PointNovo (Qiao et al., 2021) have been assessed using the
seven-species dataset, while InstaNovo (Eloff et al., 2023) conducts its evaluation on datasets curated
by the respective authors. Additionally, there exist different versions of these datasets, leading to
discrepancies even for models that claim to use the same dataset. As an example, PointNovo and
Casanovo operate on different versions of the Nine-species dataset (MassIVE dataset identifiers:
MSV000090982, MSV000081382). These inconsistencies in dataset versions complicate the ability
to gauge genuine advancements in the field. To address this issue and ensure a fair comparison
of models, we re-evaluated the performance of different models comprehensively and consistently
across three datasets. Detailed information about these datasets is provided in Table 5.

A.4 RELATED WORK: RETRIEVAL AUGMENTED GENERATION

SearchNovo is inspired by recent advances in RAG that integrate retrieval mechanisms into various
generative Natural Language Processing NLP and vision tasks, such as language modeling(Guu
et al., 2020; Borgeaud et al., 2022), image generation Tseng et al. (2020); Sheynin et al. (2022)
and Video captioning Whitehead et al. (2018); Xu et al. (2024). In computational biochemistry,
retrieval-based strategies are also crucial, such as in multiple sequence alignment (MSA), where
relevant protein sequences are retrieved and aligned, playing a fundamental role in methods like
MSA Transformer (Rao et al., 2021) and AlphaFold (Jumper et al., 2021). RetMol (Wang et al.,
2023) employs retrieved molecules with desired properties to guide the model to realize controllable
molecular generation. In contrast to these works, we propose new search (retrieval) strategy tailored
for mass spectra data and design novel methods to exploit the reference peptide sequence. SearchNovo
integrates database search and de novo sequencing into a unified framework, enjoying the advantages
of both worlds.

A.5 COMPUTATIONAL EFFICIENCY

Table 6: Computational efficiency comparison of various models on the same device. The training
time and inference time here refer to the averaged time over a batch.

Model Training Time (s) Inference Time (s) Trainable Params (M)
Seven-species Nine-species HC-PT Seven-species Nine-species HC-PT All dataset

DeepNovo 0.31 0.38 0.30 0.04 0.07 0.02 8.63
PointNovo 0.34 0.31 0.28 0.25 0.24 0.22 4.78
Casanovo 0.36 0.33 0.32 0.27 0.28 0.26 47.3
InstaNovo 0.90 0.86 0.79 0.46 0.39 0.37 92.3
AdaNovo 1.16 1.07 0.96 1.48 1.50 1.46 66.3
SearchNovo 0.52 0.49 0.49 0.31 0.33 0.30 50.8

The results in Table 6 demonstrate that SearchNovo strikes a good balance between computational
efficiency and model complexity. In terms of training time, SearchNovo is faster than more complex
models like AdaNovo and InstaNovo, while being only marginally slower than simpler models
such as DeepNovo and PointNovo across all datasets. Notably, SearchNovo achieves superior
inference efficiency, outperforming both AdaNovo and InstaNovo, and is comparable to DeepNovo
and PointNovo in terms of inference time. Furthermore, while SearchNovo has a relatively high
number of trainable parameters (50.8 million), its performance remains computationally efficient,
making it a well-balanced choice for both training and inference workloads.

A.6 EXPLANATIONS OF B, Y IONS.

In mass spectrometry-based proteomics, peptides fragment into ions that provide information about
their sequence. Two commonly observed ion types are b-ions and y-ions. b-ions are formed
when the peptide bond breaks between the nitrogen and the alpha-carbon (N-Cα) of the peptide
backbone, leaving the charge on the N-terminal fragment. For a peptide sequence, b-ions correspond
to fragments starting from the N-terminus. y-ions, on the other hand, form when the bond breaks
between the carbonyl carbon and nitrogen (C-N), leaving the charge on the C-terminal fragment.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

These ions represent fragments starting from the C-terminus. By analyzing the pattern of b- and y-
ions, peptide sequences can be reconstructed, providing critical insights in de novo peptide sequencing
and database searches.

For example, consider a peptide sequence A-G-E-W (Alanine-Glycine-Glutamic acid-Tryptophan).
During fragmentation, the following ions might be observed:

• b-ions: b1 = A, b2 = A-G, b3 = A-G-E

• y-ions: y1 = W, y2 = E-W, y3 = G-E-W

In this example, b-ions correspond to fragments from the N-terminus, while y-ions represent frag-
ments from the C-terminus. The complementary information from both ion types allows for the
reconstruction of the full peptide sequence.
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