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Abstract

The effectiveness of drug treatments is profoundly influenced by individual responses, which are shaped by gene expression
variability, particularly within pharmacogenes. Leveraging single-cell RNA sequencing (scRNA-seq) data, our study explores the extent
of expression variability among pharmacogenes in a wide array of cell types across eight different human tissues, shedding light on
their impact on drug responses. Our findings broaden the established link between variability in pharmacogene expression and drug
efficacy to encompass variability at the cellular level. Moreover, we unveil a promising approach to enhance drug efficacy prediction.
This is achieved by leveraging a combination of cross-cell and cross-individual pharmacogene expression variation measurements. Our
study opens avenues for more precise forecasting of drug performance, facilitating tailored and more effective treatments in the future.
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Introduction
Precision medicine, a revolutionary approach that acknowledges
individual variability in drug response, has gained considerable
attention in recent years owing to its potential to improve the
effectiveness of drug treatments. This approach recognizes the
inherent diversity in individual responses to drug therapies, a vari-
ability deeply rooted in genetic differences [1, 2]. In the pursuit of
understanding the distinctive variations in drug response among
individuals, research efforts are directed toward pharmacogenes
[3], genes within an individual’s genome that profoundly influ-
ence their response to medications. These genes encode proteins
involved in drug action, toxicity, transport, or metabolism, all of
which play a pivotal role in determining drug efficacy and safety
[4–6]. For instance, CYP2D6 is responsible for the metabolism of
about 20% of commonly prescribed drugs across various medical
fields, including psychiatry, pain management, and cardiology [7].
Individuals can be poor, intermediate, extensive, or ultra-rapid
metabolizers based on their CYP2D6 genotypes [8]. Additionally,
P-glycoprotein (ABCB1) plays a key role in drug transport, particu-
larly in expelling anticancer drugs from cells, thereby contributing
to multidrug resistance in cancer [9]. Variants in the ABCB1 gene
can lead to differences in drug absorption and bioavailability. For
example, certain variants might reduce the effectiveness of drugs
by increasing their efflux from cells, leading to lower intracellular
concentrations [10].

Genetic polymorphisms within pharmacogenes have been rec-
ognized as a significant contributor to the variability in drug
response [11]. The exploration of genetic variants extends beyond

coding regions to encompass regulatory elements such as pro-
moters, enhancers, and microRNA binding regions [12]. Notably,
there is a particular focus on the expression Quantitative Trait
Loci (eQTLs) that influence the expression levels of pharmaco-
genes [13, 14]. Genetic variations in these pharmacogenes can
give rise to differences in drug metabolism, absorption, distribu-
tion, and target interactions, which in turn can result in vary-
ing therapeutic outcomes and the potential for adverse drug
reactions.

It is not surprising that studying the expression variation of
pharmacogenes directly, in addition to their related genetic vari-
ants, can still give us essential information for predicting drug
responses. Simonovsky et al. [15] developed the local coefficient
of variation (LCV) as an analytical tool to probe the relationship
between gene expression variability and drug efficacy, utilizing
bulk RNA-seq data. Their findings reveal that drugs targeting
genes with high across-individual variability in expression often
exhibit reduced effectiveness within the broader population. This
study underscores the importance of considering gene expression
variability in medication design.

Expanding upon these foundational insights, we extend our
analysis to leverage single-cell RNA sequencing (scRNA-seq)
data. Recent advancements in scRNA-seq technologies and their
related analysis tools have opened new horizons in understanding
gene expression variability at an unprecedented resolution [16–
19]. Our primary aim is to explore the variability in the expression
of pharmacogenes, genes directly involved in drug response, at
the cellular level. More precisely, we aim to dissect and decipher
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the LCV of these crucial pharmacogenes across a myriad of cell
types within eight distinct human tissues.

Our analysis has unveiled a plethora of interesting discover-
ies. First, we have uncovered high expression variation among
pharmacogenes, not only between different individuals but also
between different cells of the same individual. Such variation is
usually consistently high for cells across different cell types of the
same tissue or cells across different tissues of the same cell type.
Additionally, we have investigated the correlation between the
LCV of pharmacogenes and the efficacy of associated drugs. Our
results align with previous findings, demonstrating a negative cor-
relation between cross-individual expression variability of phar-
macogenes and drug efficacy. Finally, we explore the potential
of integrating cross-cell and cross-individual LCV data to predict
drug efficacy, highlighting that the expression variability of phar-
macogenes may be a pivotal contributor to the observed variabil-
ity in drug response, even within a given tissue microenvironment.
In essence, our research illuminates the complexity between gene
expression heterogeneity and drug response, bringing us one step
closer to the era of truly personalized medicine.

Results
Pharmacogenes are generally more variable than
non-pharmacogenes across cells
Pharmacogenes have been reported to exhibit higher cross-
individual expression variability than other protein-coding genes
[15]. To test whether pharmacogenes’ expression variability is also
high across different cells of the same individuals, we obtained
the snRNA-seq data across 15 944 cells from eight tissues and
sixteen donors [20]. We utilized the local coefficient of variation
(LCV) [15] as a metric for assessing expression variability. To
obtain the cross-cell LCV of each gene, we calculated the LCV
for each cell type by averaging the LCV values from the sixteen
donors. The overall tissue-level LCV for that gene was then
obtained by averaging these cell-type-level LCVs. As shown in
Fig. 1A, except for skin tissues, pharmacogenes consistently
demonstrate significantly higher cross-cell variability compared
to non-pharmacogenes (P values < 0.05, T-tests).

Our own analysis of the population-level GTEx data [21] fur-
ther corroborated that pharmacogenes typically exhibit increased
expression variability across different individuals when compared
to non-pharmacogenes (as shown in Fig. 1B, P value < 0.001, T-
tests). It is worth noting that the esophagus tissue in the bulk data
corresponds to esophagus mucosa and esophagus muscularis in
the snRNA-seq data.

To distinguish different types of pharmacogenes and explore
potential differences in their LCV patterns compared to non-
pharmacogenes, we categorized pharmacogenes into three main
functional groups: “regulation,” “transport,” and “metabolism.”
In our analysis of cross-cell LCVs, we found significant differ-
ences between all three groups of pharmacogenes and non-
pharmacogenes in six out of eight tissues studied, excluding
breast and skin tissues. Specifically, the “regulation” group exhib-
ited additional significant differences between pharmacogenes
and non-pharmacogenes in breast tissue. Across all tissues, our
analysis of cross-individual LCVs consistently showed significant
differences between all three groups of pharmacogenes and non-
pharmacogenes. Detailed plots illustrating these findings can be
found in Supplementary Figs 3 and 4.

We conducted a more detailed investigation into the correla-
tion between cross-cell and cross-individual LCVs for pharma-
cogenes for the eight different tissues. As shown in Fig. 1C, all

tissues exhibit a significant positive correlation between the two
types of variability measurements. This suggests that there might
be shared underlying mechanisms or factors contributing to the
expression variability of pharmacogenes within these particular
tissue contexts, both at the intra-individual and inter-individual
levels. The positive correlation suggests that factors affecting vari-
ability within individual cells also contribute to variability across
different individuals. Conversely, a lack of correlation would imply
that high cross-individual variability is driven by population-
specific factors like genetic diversity or environmental influences,
which might not manifest uniformly within individual cells.

Variability of pharmacogenes at the cell-type
level
Analyzing variability patterns of pharmacogenes across cells
of the same cell type and tissue, our study found that phar-
macogenes still demonstrate higher variability than non-
pharmacogenes. As an illustration, in the esophagus mucosa
tissue (Fig. 2A), six out of seven cell types exhibit a higher cross-
cell LCV for pharmacogenes compared to non-pharmacogenes.
This contrast in variability is particularly evident in three
epithelial cell types, namely basal, squamous, and suprabasal
cells, as well as in endothelial vascular cells (P value < 0.001,
T-tests). Moreover, our exploration extends to other tissues
(Supplementary Figs 1 and 2). In six out of seven cell types of
the heart and all eight cell types of the prostate, pharmacogenes
exhibit significantly higher LCV values than non-pharmacogenes.

The extended scope of our analysis further solidifies our find-
ings. Figure 2B provides a comprehensive visual representation
of our observations, presenting the T-test p-values that com-
pare pharmacogene and non-pharmacogene expression variabil-
ity across all cell types found in the eight distinct tissues. More
than 75% (19 out of 25) of cell types show pronounced pharmaco-
gene variability vs. non-pharmacogenes in at least one tissue.

For each pharmacogene, we calculated the range in LCV
across different cell types within identical tissues. As depicted
in Fig. 2C, pharmacogenes demonstrated a comparable or even
narrower range (observed in skin and breast tissues) in their
LCVs compared to non-pharmacogenes. Notably, the LCVs of
pharmacogenes exhibit similarity between pharmacogenes and
non-pharmacogenes in the skin tissue (Fig. 1A). For the breast
tissue, pharmacogenes show elevated LCVs in contrast to non-
pharmacogenes (Fig. 1A). This heightened LCV is consistently
observed across different cell types within the breast, resulting in
a reduced overall range (Fig. 2C).

Consistent variability patterns of pharmacogenes
in the same cell types across different tissues
We analyzed the LCV distribution for specific cell types across
different tissues. Our selection criteria included only those
cell types found in more than three tissue types from our
dataset, including “Endothelial cell (vascular),” “Fibroblast,” and
“Adipocyte.” For each pharmacogene, we computed the range of
LCV across different tissues of the same cell type. Our results
yielded statistically significant differences in the distribution of
LCV ranges between pharmacogenes and non-pharmacogenes
(Fig. 3, P-value < 0.05 for Endothelial cells and Adipocytes, T-
tests). Notably, pharmacogenes displayed a lower range of LCV
compared to non-pharmacogenes across various tissues. This
pattern suggests a consistently high expression variation for phar-
macogenes across varied tissue environments within specific cell
types. Thus, compared to non-pharmacogenes, pharmacogenes
tend to exhibit variation across different cells of the same cell type
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Figure 1. Expression variability of pharmacogenes in different tissues. (A) Comparison of pharmacogenes(p) and non-pharmacogenes(np) for their
cross-cell expression variability. (B) Comparison of pharmacogenes(p) and non-pharmacogenes(np) for their cross-individual expression variability.
(C) Comparison of cross-cell variability and cross-individual variability of pharmacogenes. The tissue types included are skeletal muscle (skm), breast
(bre), esophagus mucosa (esoMuc), esophagus muscularis (esoMus), heart (hea), lung (lun), prostate (pro), and skin (ski). For cross-individual LCV
consideration, esophagus (eso) tissue is considered without further considering the sub-locations. ∗∗∗: P-value < 0.001, ∗∗: P-value < 0.01, ∗: P-value
< 0.05; T-tests for A and B and spearman correlation tests for C.

(see Fig. 2A and B). Moreover, they consistently display such high
variation across different cell types within the same tissue envi-
ronment (Fig. 2C) and across different tissues of the same cell type
(Fig. 3).

Distribution of pharmacogenes’ LCV values
across different cell types and different tissues
Figure 4A illustrates how pharmacogenes distribute across tissue
cell types based on their peak LCV (largest local coefficient of vari-
ation), with LCV values averaged across different individuals. Let
Nij denote the count of pharmacogenes that exhibit their maximal
LCV within a cell type i of tissue j. The average of Nij across all
possible combinations of i and j is 14.78. Cell types within the skin
(including epithelial cells, sebaceous cells, and unknown types)
and the heart (including endothelial cells, immune, fibroblasts,
and adipocytes) show Nij values exceeding the average of 14.78.

Conversely, all cell types in tissues like the lung and prostate have
Nij values below this average. This pattern highlights the diversity
in LCV distribution across various cell types and tissues.

The heatmaps in Fig. 4B and C display the correlation between
LCV values among different cell types and tissues (averaged
across multiple individuals) using hierarchical clustering for
pharmacogenes and non-pharmacogenes, respectively. Figure 4B
demonstrates that, while most cell types exhibit a low positive
correlation with each other, a notably high correlation is observed
between heart and prostate myocytes. Additionally, myocytes
and epithelial cells exhibit a stronger correlation with each other
compared to other cell types. These findings provide valuable
insights into the relationships between different cell types and
tissues regarding the variability of pharmacogenes. Conversely,
Fig. 4C reveals that the correlations for non-pharmacogenes are
predominantly weak, showing no significant trends.
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Figure 2. Expression variability of pharmacogenes (“p”) and non-pharmacogenes (“np”) at the cellular level. (A) Comparison of pharmacogenes and non-
pharmacogenes in different cell types of the esophagus mucosa tissue. (B) Comparing pharmacogenes and non-pharmacogenes across all cell types in
the eight considered tissues. P-values from T-tests are shown in the heatmap. Cell types not present for a specific tissue in our dataset are shaded in
grey. (C) Comparing the range of LCV across different cell types of the same tissue. T-tests are performed between the ranges of pharmacogenes and
those of non-pharmacogenes. ∗∗∗: P-value < 0.001, ∗∗: P-value < 0.01, ∗: P-value < 0.05.

Drug efficacy is negatively correlated with the
variability LCV of pharmacogenes
Previous research conducted by Simonovsky et al. [15] highlighted
a negative correlation between the variability of pharmacogenes
across individuals (i.e. cross-individual variability) and drug effi-
cacy using bulk RNA-seq data. In our study, we aimed to delve
deeper into this correlation for cross-cell variability by focusing
on cell-level LCV obtained from single-nucleus RNA sequencing
(snRNA-seq).

To investigate the relationship between pharmacogenes’ cross-
cell variability and drug efficacy, we computed the weighted

average LCV of each drug’s target genes (details in Materials
and methods). Specifically, we extracted a drug’s target genes
using the DGIdb database [22]. For each pharmacogene gene,
we calculated the LCV across all cell types of a tissue and for
each donor individually, then averaged these donor-specific cell-
type level LCVs. The maximum averaged LCV across different
cell types of a particular tissue was chosen as its representative
value for subsequent analyses. Next, we used the interaction score
for each gene-drug pair as the weight to compute the weighted
average LCV. Similarly, we calculated the cross-individual LCV of
pharmacogenes based on GTEx tissue bulk RNA-seq data and
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Figure 3. Comparing the range of LCV across different tissue types of
the same cell. T-tests are performed to compare pharmacogenes (“p”)
and non-pharmacogenes (“np”). ∗∗∗: P-value < 0.001, ∗∗: P-value < 0.01,
∗: P-value < 0.05.

obtained the weighted average for each gene-drug pair. Conse-
quently, for every drug and every considered tissue, there exists
a corresponding cross-cell pharmacogene LCV (Ck) and a cross-
individual pharmacogene LCV (Ik).

The analysis was conducted separately for each tissue. Our
findings reveal a consistent negative correlation between drug
efficacy and the LCV of pharmacogenes. As demonstrated in
Fig. 5A, six out of eight tissues exhibit a negative correlation
between drug efficacy and cross-cell pharmacogene LCVs. Mean-
while, a negative correlation was observed for all considered seven
tissues between drug efficacy and cross-individual LCVs (Fig. 5B).
In essence, drugs targeting genes with higher LCV values tend to
exhibit lower efficacy. The statistical significance of this negative
correlation was confirmed for the cross-cell variability in the
skeletal muscle and lung tissue (correlation = −0.149 or −0.256,
P = 0.04 or 0.002, one-tailed Spearman’s tests) and for the cross-
individual variability in the esophagus and heart tissues (correla-
tion = −0.182 or −0.287, P = 0.0005 or 0.02, one-tailed Spearman’s
tests). These results underscore the significance of gene variabil-
ity in understanding drug efficacy at both the individual and
population levels across various tissues.

Enhanced drug efficacy prediction through joint
consideration of cross-cell and cross-individual
LCV
As drug efficacy is influenced by both cross-cell LCV and cross-
individual LCV, we embarked on an exploration to assess whether
the combination of these two variables could enhance our predic-
tive capabilities. To accomplish this, we first formulated multiple
linear regression models utilizing various combinations of LCV
features (see Materials and methods for details). We selected
linear regression for its straightforward interpretability of coef-
ficients and simplicity. Given our relatively small sample size of
drugs, linear regression is less likely to overfit compared to more
complex models.

When we exclusively utilized tissue-level cross-individual LCV
features to predict drug efficacy (model 1), the resulting adjusted
R-squared value was a mere 0.043. Alternatively, focusing solely
on tissue-level cross-cell LCV features (model 2) yielded a some-
what improved adjusted R-squared of 0.074. However, it was
when we jointly considered both cross-individual and cross-cell
LCV features (model 3) that our model demonstrated substantial
improvement, achieving an adjusted R-squared of 0.121. Notably,
several predictors (P < 0.05) emerged as significant contributors
to this enhanced prediction, encompassing cross-individual LCV
features in the esophagus (P = 0.02) and heart (P = 0.007) tissues,
along with the cross-cell LCV feature in the lung (P = 0.003).

Furthermore, we explored an approach that integrates tissue
cell-type-level LCVs (Tk, computed across cells belonging to the
same cell type within a specific tissue) with cross-individual LCVs
(model 4). Remarkably, this approach exhibited superior predictive
power, resulting in an adjusted R-squared of 0.214. Among the
significant predictors (P < 0.05) were cross-cell LCV features for
breast epithelial cells (luminal), prostate epithelial cells (Hillock),
prostate fibroblasts, and lung epithelial cells (alveolar type II).
None of the cross-individual LCV terms stood out.

To further investigate the relationship between drug efficacy
and the LCVs in target tissues, we focused on two distinct sets
of drugs targeting the heart (including Amiodarone, Digoxin,
Diltiazem, Disopyramide, Dofetilide, Dronedarone, Flecainide,
Lidocaine, Propafenone, and Sotalol) and lung (including Amino-
phylline, Arformoterol, Montelukast, Pseudoephedrine, Salbuta-
mol (Albuterol), Theophylline, Tiotropium, Zafirlukast, Zileuton,
and Levofloxacin), respectively. For each drug set, we developed
simple linear regression models using tissue-level cross-cell LCV
(Ck) and cross-individual LCV (Ik) calculated from each tissue. For
both drug sets, the models trained on the LCVs of the target tissues
consistently ranked among the top three performers. Specifically,
for heart-targeting drugs, the top three models performed best
with features from the heart (adjusted R2 = 0.379), breast (adjusted
R2 = 0.261), and skin (adjusted R2 = 0.143). Similarly, for lung-
targeting drugs, the top three models performed best with
features from the breast (adjusted R2 = 0.229), heart (adjusted
R2 = 0.211), and lung (adjusted R2 = 0.117).

To validate our findings, we repeated the same analysis by
randomly selecting the same number of drugs as in the tissue-
specific drug sets. We repeated this process 1000 times and calcu-
lated the mean adjusted R2. Notably, the results from the random
selection demonstrated significantly lower performance, with a
mean adjusted R2 of 0.094 for models trained on heart features
and 0.064 for models trained on lung features.

Linear regression assumes a linear relationship between LCV
features and drug efficacy. This assumption may oversimplify
complex biological relationships, potentially leading to an
incomplete representation of underlying patterns in the data.
To address this, we subsequently employed a random forest
machine learning model, utilizing the cell-type-level LCVs
(Tk) and cross-individual LCVs (Ik) from model 4, to explore
the potential nonlinear relationship between pharmacogene
expression variability and drug efficacy. Fig. 6A presents scatter
plots that illustrate the relationships between drug relative
efficacy and the top five features based on the highest node
purity (i.e. how well a node separates samples of the same class
from those of different classes). These include four cross-cell
LCV features for heart endothelial cells (vascular), esophagus
mucosa fibroblasts, lung epithelial cells (alveolar type I), lung
epithelial cells (alveolar type II), and cross-individual LCV for
the heart. A LOWESS line was incorporated to more accurately
capture and illustrate the underlying negative trends in the
data. Complementing this, Fig. 6B presents an incMSE (‘increase
in mean squared error’) that measures the improvement in
prediction accuracy achieved by a feature) plot, highlighting the
relative importance of the top three features: all are cross-cell
LCV features for esophagus mucosa fibroblasts, lung epithelial
cells (alveolar type I and II).

Discussion
Individual responses to drug treatments are intricately tied
to the variability in gene expression, especially within
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Figure 4. Cell-type expression variation of pharmacogenes. (A) Cell types exhibiting the maximum LCV of a pharmacogene. (B) Spearman correlations
between LCV values in different cell types for pharmacogenes. (C) Spearman correlations between LCV values in different cell types for non-
pharmacogenes. Tissue abbreviations: Skeletal muscle (skm), breast (bre), esophagus mucosa (esoMuc), esophagus muscularis (esoMus), heart (hea),
lung (lun), prostate (pro), and skin (ski).

pharmacogenes, which play crucial roles in drug responses. Our
study utilized single-cell RNA sequencing (scRNA-seq) data to
delve into the expression variability of pharmacogenes across
various cell types in eight human tissues. scRNA-seq allows for
the capture of expression patterns at the individual cell level,
enabling the identification of cell-type-specific gene expression
that bulk RNA-seq averages out. This detailed resolution is
crucial for understanding the heterogeneity within tissues and
the specific roles of different cell types in biological processes.
Our findings not only confirm the well-established link between
pharmacogene expression variability and drug efficacy but
also offer insights into how the cellular-level variability can be
leveraged for improved predictions.

The discrepancy in LCV between the GTEx bulk RNA-seq data
and scRNA-seq data is notable, with the former showing greater
variability, indicated by a larger interquartile range (Fig. 1B vs.
Figure 1A). This difference can be attributed to several factors.
Firstly, the GTEx bulk dataset includes samples from a diverse
population of approximately 1000 donors, reflecting a broad spec-
trum of genetic backgrounds that likely contribute to increased
gene expression variability. Secondly, bulk RNA-seq captures gene
expression across all cell types within a tissue. Tissue heterogene-
ity can introduce additional variability. In contrast, scRNA-seq
provides cell-type-specific data, enabling independent calculation
of LCV for each cell type. Aggregating these cell-type-specific LCVs
yields a more precise measurement of overall tissue LCV.

We observed significant expression variability among phar-
macogenes, both between different individuals and between dif-
ferent cells of the same individual. Pharmacogenes consistently

exhibited higher variability compared to non-pharmacogenes, a
trend that was evident across various tissues. This aligns with
previous findings that pharmacogenes often display increased
variability in expression, contributing to the observed diversity in
drug responses among individuals. At the cross-individual level,
genetic differences among patients can lead to varying expression
levels of the same pharmacogene, resulting in different drug
responses. For instance, patients with higher expression of certain
key pharmacogenes may metabolize or react to drugs differently
compared to those with lower expression levels. At the cross-cell
level, our findings indicate that even within a single individual,
different cell types can show significant variability in pharmaco-
gene expression. This suggests that a drug’s effectiveness could
be influenced by the specific cellular composition of the targeted
tissue. In patients with different disease states, changes in cel-
lular composition could further contribute to variability in drug
responses.

Additionally, we found that the variability in gene expression
among different cell types is closely linked to their specialized
functions. For instance, epithelial and endothelial cells exhibit
high gene variability due to their pivotal roles in drug transport.
Epithelial cells, lining organ surfaces, play critical roles in the
absorption and excretion of various substances, including drugs
[23]. They must dynamically regulate gene expression to manage
the influx, processing, and efflux of a wide array of compounds.
Similarly, endothelial cells are central to the circulatory system’s
transport functions, including nutrient and oxygen delivery, waste
removal, and immune surveillance [24]. Serving as the vital inter-
face between the bloodstream and tissues, endothelial cells must
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Figure 5. Negative correlation between drug relative efficacy and LCV of pharmacogenes. (A) Correlation based on individual-level cross-cell LCVs.
(B) Correlation based on population-level cross-individual LCVs. One-sided spearman tests. ∗∗∗: P-value < 0.001, ∗∗: P-value < 0.01, ∗: P-value < 0.05.
Tissue abbreviations: Skeletal muscle (skm), breast (bre), esophagus mucosa (esoMuc), esophagus muscularis (esoMus), heart (hea), lung (lun), prostate
(pro), and skin (ski).

adapt to diverse conditions and demands, requiring flexible gene
expression patterns.

To further validate our findings, we performed randomized
tests for all comparisons between pharmacogenes and non-
pharmacogenes. In each test, we randomly selected an equal
number of non-pharmacogenes to compare with pharmacogenes.
We then repeated this process 10 000 times to evaluate the
significance of the average p-value. Notably, the results were
similar to those obtained without the randomized tests. Detailed
plots illustrating these findings can be found in Supplementary
Figs 5–9.

Our analysis unveiled a negative correlation between the
variability of pharmacogenes and drug efficacy, both at the
cross-cell and cross-individual levels. Drugs targeting genes with
higher expression variability tended to exhibit reduced efficacy,
highlighting the importance of considering gene expression
heterogeneity when designing and predicting drug responses.
This correlation was observed across multiple tissues, empha-
sizing the broad impact of pharmacogene variability on drug
outcomes.

To enhance our understanding and predictive capabilities,
we developed regression and machine learning models that
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Figure 6. Top LCV features in drug efficacy prediction via a random forest model. (A) Relationship between the rank (increasing order) of drug relative
efficacy (RE) and top 5 LCV features based on the node purity from the random forest analysis. LOWESS smoothing lines have been superimposed.
I: Cross-individual LCVs. T: Cross-cell LCVs. (B) Importance ranking of all LCV features based on incMSE.

integrated cross-cell and cross-individual pharmacogene expres-
sion variability. These models showed promising results, particu-
larly when combining both types of variability. Notably, the joint
consideration of cross-cell and cross-individual LCV features
yielded a substantial improvement in predicting drug efficacy.

This suggests that a comprehensive approach, encompassing
variability at both the cellular and individual levels, can provide
valuable insights into drug performance. Notably, our analysis
identified the cross-cell LCV features, especially those in the lung,
as dominant predictors.
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We trained linear regression models on tissue-specific drug
sets to demonstrate that LCVs in the target tissue are predictive
of drug efficacy. Models trained on features from the target tissue
consistently ranked among the top three performers. However, it
should be noted that they were not always the best models. This
variability can be attributed to well-known off-target drug effects
[25] and the inherent bias introduced by our small sample size of
drugs.

Our findings suggest that incorporating single-cell gene
expression variability into the early stages of drug development
could enhance the design process. By identifying pharmacogenes
with high variability across different cell types and tissues,
researchers can pinpoint potential targets likely to produce
variable patient responses. This approach could guide the
development of drugs that account for such variability, leading
to more consistent and effective treatments. Additionally,
considering both cross-individual and cross-cell variability could
improve predictions of drug efficacy and safety, ultimately
supporting the creation of more personalized, context-specific
therapies.

In summary, our research underscores the complexity of gene
expression variability in pharmacogenes and its profound impact
on drug efficacy. By elucidating these variability patterns at both
cellular and tissue levels, we move closer to the era of personal-
ized medicine. Understanding how individual genetic differences
manifest in drug responses allows for more tailored and effective
treatment strategies.

While our study provides valuable insights, several limita-
tions should be acknowledged. The reliance on single-cell RNA
sequencing data, while offering high resolution, may not capture
the entirety of gene expression variability in complex tissues.
Additionally, the dataset’s focus on healthy tissues limits the
extrapolation to disease contexts where drug responses may dif-
fer. Future studies could explore how these variability patterns
translate into clinical settings and consider a broader range of
tissues and disease conditions.

The scRNA-seq data and GTEx bulk RNA-seq data originate
from different sample populations, which may introduce bias in
comparisons. Specifically, the scRNA-seq data include only 16
donors. The LCV calculated from cells of this relatively small
number of individuals may not generalize well to larger popula-
tions. Future studies should include a larger and more diverse set
of donors to enhance the generalizability and robustness of the
findings.

In addition to the limitations of scRNA-seq data mentioned
earlier, further insights could be gained by more detailed
examination of tissue-specific factors and exploring cross-
cell LCVs within specific tissues relevant to drug targeting.
Considering additional covariates, such as the genetic diversity
of pharmacogenes, may offer a clearer understanding of drug
efficacy.

Furthermore, the drug efficacy score in our analysis is
derived from adverse event reports in the FDA Adverse Event
Reporting System. However, the interpretation and reporting
of adverse events can vary significantly among patients and
healthcare providers, introducing variability that may affect the
accuracy of the relative efficacy quantification. Future studies
could mitigate this issue by adopting a more comprehensive
approach to calculating drug efficacy, such as integrating multiple
data sources to enhance the robustness and reliability of the
measurements.

In conclusion, our study contributes to the growing body of evi-
dence supporting the importance of gene expression variability,

particularly in pharmacogenes, for understanding and predicting
drug responses. By integrating cross-cell and cross-individual
variability measurements, we provide a framework for more
precise drug efficacy predictions. This work lays the founda-
tion for further investigations into the complicated relation-
ships between gene expression, cellular heterogeneity, and
drug outcomes, ultimately advancing the field of precision
medicine.

Materials and methods
Gene expression data from normal human tissue
samples
Single-cell RNA-seq, more precisely single-nucleus RNA-seq
(snRNA-Seq) data here [20] were obtained from the Genotype-
Tissue Expression (GTEx) [21] V9 release (https://gtexportal.org/
home/). snRNA-seq uses isolated nuclei instead of whole cells to
profile gene expression. The data were collected from non-disease
samples of sixteen donors and eight tissues (skeletal muscle,
breast, esophagus mucosa, esophagus muscularis, heart, lung,
prostate, and skin). A total of 15 944 cells were investigated. Raw
read counts were normalized by GTEx using CP10k (copy per 10 k
transcripts). We filtered genes expressed in less than 50 cells and
removed cells with less than 1650 genes. Because snRNA-Seq data
contain a large number of zero values, we also removed genes with
mean expression lower than the 10th quantile of the means. In
addition, bulk RNA-seq data for seven of these tissues (esophagus
in the bulk data corresponds to esophagus mucosa and esophagus
muscularis in the snRNA-seq data) were downloaded from the
GTEx Analysis V8 release. Raw read counts were normalized using
TPM (transcripts per million) by GTEx. Similarly, samples and
genes with low quality were filtered according to GTEx analysis
procedures.

Expression variability calculation
The inflated zero expression values in snRNA-Seq data result
in a biased measure of expression variability when applying the
coefficient of variation (CV) directly. Therefore, we adopted the
local coefficient of variation (LCV) algorithm [15] to estimate the
expression variability. This algorithm uses a ranking approach
based on a sliding window, which has been validated as the
least biased towards lowly expressed genes and the most robust
to data incompleteness compared to other variability measures
[15], including standard deviation (SD), mean absolute deviation
(MAD), coefficient of variation (CV), dispersion measure (DM), and
entropy variance (EV). Here, we used a 500-gene window. The
LCV values range from 0 to 100. A larger LCV represents higher
expression variability.

Selection of pharmacogenes
A list of 389 pharmacogenes, referred to as “PGRN pharmaco-
genes,” was obtained from Chhibber et al. [26]. These genes were
identified from various resources and publications related to
drug responses, including PharmGKB [27], PharmaADME [28], and
FDA Pharmacogenomics Biomarkers [29]. We then compared the
expression variability of pharmacogenes with that of the remain-
ing non-pharmacogenes profiled in GTEx. To extend our list of
pharmacogenes for the drug efficacy study, we incorporated 312
additional genes from the DGIdb database [22] (https://www.
dgidb.org/). Such additional selection focused on genes interacting
with more than two drugs.
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Drug-gene interaction score and drug relative
efficacy
Drug-gene interactions were downloaded from DGIdb [22]. This
database presents an interaction score between a drug d and a
target gene g as:

ISd,g = #of average known gene partners of all drugs
#of known gene partners of drug d

× #of average known drug partners of all genes
#of known drug partners of gene g

× evidence score

This drug-gene interaction score, treated at the logarithmic scale,
serves as the weight for computing the overall LCV across all n

target genes of the same drug d: LCVd =
∑n

g=1 log(ISd,g)×LCVg
∑n

g=1 log(ISd,g)
. Note that

LCVg can be cross-cell or cross-individual LCV values for gene g.
Furthermore, the relative efficacy (RE) scores for drug-disease

pairs were obtained from Guney et al. [30]. The RE scores were
computed using text-mining methods on reports submitted to the
FDA’s Adverse Event Reporting System (FAERS, https://open.fda.
gov/data/faers/) and comparing the number of ineffective reports
with the number of reports stating the most common complaints.
RE has a range from 0 to 1, and a higher RE score indicates that a
drug is more effective in treating the disease. A total of 129 drugs
were considered in our study.

Computational models to predict drug relative
efficacy
To predict drug relative efficacy (RE), we devised multiple regres-
sion models leveraging different combinations of LCV values for
their corresponding pharmacogenes.

1) Cross-individual LCV Model: This model relies exclusively
on tissue-level cross-individual LCV features. RE = β0 +
∑7

k=1 βkIk. Here, the combined LCV value of a drug for each
tissue k (Ik) was calculated as the weighted average of LCV
values of all pharmacogenes associated with that drug
according to the formula above. For each pharmacogene,
the LCV was calculated across multiple individual samples
of tissue k.

2) Cross-cell LCV Model: This model exclusively employs the
tissue-level cross-cell LCV features. RE = β0 + ∑8

k=1 βkCk. For
each pharmacogene, the LCV was calculated across cells of
the same cell type within tissue k and then averaged across
individuals. To further obtain a tissue-level measurement,
we employed three different methods to aggregate LCV val-
ues across different cell types within that tissue: maximum,
mean, and median. The corresponding adjusted R2 values
obtained from these methods were 0.074, 0.050, and 0.051,
respectively. As a result, we chose the maximum LCV among
different cell types within tissue k (Ck) for the drug efficacy
prediction.

Joint LCV Model: This model jointly considers both the cross-
individual and cross-cell LCV features. RE = β0 + ∑7

k=1 βkIk +
∑8

j=1 β7+jCj.Comprehensive joint LCV Model: This model inte-
grates tissue-level cross-individual LCVs with cell-type level LCVs:
RE = β0 + ∑7

k=1 βkIk + ∑37
j=1 β7+jTj. In this case, the LCV for each

pharmacogene was calculated across cells of the same cell type
within a tissue (a total of 37 cell-type and tissue combinations)
and then averaged across individuals. The weighted average
across all pharmacogenes for a drug is denoted as Tj.The above
four regression models provide a comprehensive framework

for predicting drug relative efficacy by considering various
combinations of LCV features, encompassing both individual and
cell-level variability.

Moreover, to capture the potential non-linear relationship
between expression variability and drug efficacy, we applied a
random forest model using the cell-type-level LCVs

(
Tj

′s
)

and
cross-individual LCVs (Ik

′s) identified in Model 4. We ranked
the impact of various LCV features on drug efficacy based on
node purity and “increase in Mean Squared Error” (incMSE). Node
purity in random forest models refers to the homogeneity of
the samples within each node of the decision trees comprising
the forest. It measures how well a node separates samples of the
same class from those of different classes. Higher purity indicates
that the majority of samples within a node belong to the same
class, resulting in clearer decision boundaries. “Increase in mean
squared error” is a criterion used by random forest models to
evaluate the effectiveness of splitting a node. It quantifies the
reduction in overall variance that occurs when a node is split
based on a particular feature. A larger increase in mean squared
error suggests that splitting the node based on that feature results
in greater improvement in prediction accuracy.
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